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Optimization on linear matrix inequalities
for polynomial systems control

Didier Henrion

Abstract
Many problems of systems control theory boil down to solving polynomial equations,

polynomial inequalities or polyomial differential equations. Recent advances in convex op-
timization and real algebraic geometry can be combined to generate approximate solutions
in floating point arithmetic.

In the first part of the course we describe semidefinite programming (SDP) as an extension
of linear programming (LP) to the cone of positive semidefinite matrices. We investigate
the geometry of spectrahedra, convex sets defined by linear matrix inequalities (LMIs) or
affine sections of the SDP cone. We also introduce spectrahedral shadows, or lifted LMIs,
obtained by projecting affine sections of the SDP cones. Then we review existing numerical
algorithms for solving SDP problems.

In the second part of the course we describe several recent applications of SDP. First, we
explain how to solve polynomial optimization problems, where a real multivariate polynomial
must be optimized over a (possibly nonconvex) basic semialgebraic set. Second, we extend
these techniques to ordinary differential equations (ODEs) with polynomial dynamics, and
the problem of trajectory optimization (analysis of stability or performance of solutions
of ODEs). Third, we conclude this part with applications to optimal control (design of a
trajectory optimal w.r.t. a given functional).

For some of these decision and optimization problems, it is hoped that the numerical solu-
tions computed by SDP can be refined a posteriori and certified rigorously with appropriate
techniques.

Disclaimer
These lecture notes were written for a tutorial course given during the conference “Journées

Nationales de Calcul Formel” held at Centre International de Rencontres Mathématiques,
Luminy, Marseille, France in May 2013. They are aimed at giving an elementary and in-
troductory account to recent applications of semidefinite programming to the numerical
solution of decision problems involving polynomials in systems and control theory. The
main technical results are gathered in a hopefully concise, notationally simple way, but for
the sake of conciseness and readability, they are not proved in the document. The reader
interested in mathematical rigorous comprehensive technical proofs is referred to the papers
and books listed in the “Notes and references” section of each chapter. Comments, feedback,
suggestions for improvement of these lectures notes are much welcome.

Course taught during the meeting “Journées Nationales de Calcul Formel” organized by Guillaume Chèze, Paola
Boito, Clément Pernet and Mohab Safey el Din. 13-17 mai 2013, C.I.R.M. (Luminy).
I am grateful to the organizers of the conference, and especially to Guillaume Chèze and Mohab Safey El Din,
for giving me the opportunity to prepare and present this material. Many thanks to Mohamed Rasheed Hilmy
Abdalmoaty, Mathieu Claeys, Simone Naldi, Luis Rodrigues and Mohab Safey El Din for their suggestions and
remarks on the text.
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CHAPTER 1

Motivating examples

In this introductory section we describe elementary problems of systems control theory that can
be formulated as decision and optimization problems over polynomial equations and differential
equations.

1. Structured eigenvalue assignment

We consider the problem of designing a pulsed power generator in an electrical network. The
engineering specification of the design is that a suitable resonance condition is satisfied by the
circuit so that the energy initially stored in a number of stage capacitors is transferred in finite
time to a single load capacitor which can then store the total energy and deliver the pulse.

Mathematically speaking, the problem can be formulated as the following structured matrix
eigenvalue assignment problem. Let n ∈ N and define the matrix

B =



2 −1 0 · · · 0

−1 2
...

0
. . . 0

... 2 −1
0 · · · 0 −1 n+1

n


.

Given positive rational numbers ak ∈ Q, k = 1, . . . , n, consider the eigenvalue assignment problem

det(sIn −B−1 diag x) = sn + b1(x)sn−1 + · · ·+ bn−1(x)s+ bn(x) =
n∏
k=1

(s+ ak)

where x ∈ Rn is a vector of unknowns and diagx stands for the n-by-nmatrix with entries of x along
the diagonal. In systems and control terminology, this is a structured pole placement problem, and
vector x can be interpreted as a parametrization of a linear controller to be designed. By identifying
like powers of indeterminate s in the above relation, it can be formulated as a polynomial system
of equations pk(x) = 0, k = 1, . . . , n where

p1(x) = b1(x)− a1 − · · · − an
p2(x) = b2(x)− a1a2 − a1a3 − · · · − an−1an

...
pn(x) = bn(x)− a1a2 · · · an.

In the context of electrical generator design, a physically relevant choice of eigenvalues is

ak = 1
(2k)2 − 1 , k = 1, . . . , n.

For example, if n = 2, we obtain the following system
3
4x1 + x2 − 2

5 = 0
1
2x1x2 − 1

45 = 0.
More generally, we obtain a system with n unknowns and n polynomial equations of respective
degrees 1, . . . , n which has typically much less than n! real solutions. Geometrically, the feasibility
set

X = {x ∈ Rn : pk(x) = 0, k = 1, . . . , n}
is a zero-dimensional real algebraic set of small cardinality. When n = 8, say, we would like to find
a point in X.
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2. Control law validation

In aerospace engineering, the validation of control laws is a critical step before industrializa-
tion. Generally it is carried out by expensive time-simulations. A very simple, but representative
example, is the validation of a control law for a one-degree-of-freedom model of a launcher atti-
tude control system in orbital phase. The closed-loop system must follow a given piecewise linear
angular velocity profile. It is modeled as a double integrator

Iθ̈(t) = u(t)
where I is a given constant inertia, θ(t) is the angle and u(t) is the torque control. We denote

x(t) =
[
θ(t)
θ̇(t)

]
and we assume that both angle x1(t) and angular velocity x2(t) are measured, and that the torque
control is given by

u(x(t)) = sat(F ′dz(xr(t)− x(t)))
where xr(t) is the given reference signal, F ∈ R2 is a given state feedback, the prime denotes
transposition, sat is a saturation function such that sat(y) = y if |y| ≤ L and sat(y) = L sign(y)
otherwise, dz is a dead-zone function such that dz(x) = 0 if |xi| ≤ Di for some i = 1, 2 and
dz(x) = 1 otherwise. Thresholds L > 0, D1 > 0 and D2 > 0 are given.

We would like to verify whether the system state x(t) reaches a given subset XT = {x ∈ R2 :
xTx ≤ ε} of the deadzone region after a fixed time T , and for all possible initial conditions x(0)
chosen in a given subset X0 of the state-space, and for zero reference signals.

3. Bolza’s optimal control problem

Figure 3.1: Sequences of state trajectories and control inputs for Bolza’s example.

Our last example is a classical academic problem of calculus of variations illustrating that an
optimal control problem with smooth data (infinitely differentiable Lagrangian and dynamics, no
state or input constraints) can have a highly oscillatory optimal solution.
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Consider the optimal control problem

p∗ = inf
∫ 1

0
(
x4(t) + (u2(t)− 1)2) dt

s.t. ẋ(t) = u(t), t ∈ [0, 1],
x(0) = 0, x(1) = 0

where the infimum is w.r.t. a Lebesgue integrable real-valued control u ∈ L 1([0, 1];R). Intuitively,
the state trajectory x(t) should remain zero, and the velocity ẋ = u should be equal to +1 or
−1, so that the nonnegative Lagrangian l(t, x(t), u(t)) := x4(t) + (u2(t) − 1)2 remains zero, and
hence the objective function is zero, the best we can hope. We can build a sequence of bang-
bang controls uk(t) such that for each k = 0, 1, 2, . . . the corresponding state trajectory xk(t)
has a sawtooth shape, see Figure 3.1. With such a sequence the objective function tends to
limk→∞

∫ 1
0 l(t, xk(t), uk(t))dt =

∫ 1
0 x

4
k(t)dt = 0 and hence p∗ = 0. This infimum is however not

attained with a control law u(t) belonging to the space of Lebesgue integrable functions.
We would like to develop a numerical method that can deal with such oscillation phenomena

and would allow us to construct explicitly an optimal control law.

4. Course outline

The objective of this document is to describe a systematic approach to the numerical solution
of these nonlinear nonconvex decision problems. Our strategy will be as follows:

(1) the problem is relaxed and linearized to an LP on measures, interpreted as the dual to an
LP on continuous functions;

(2) since the decision problems have polynomial data, the measure LP is formulated as a
moment LP;

(3) a hierarchy of finite-dimensional LMI relaxations is used to solve the moment LP numeri-
cally, with guarantees of asymptotic, and sometimes finite convergence.

Since we do not assume that the reader is familiar with SDP and the geometry of LMIs, the
document starts with an introductory Chapter 2 on finite-dimensional conic programming. In
Chapter 3, our approach is applied to nonconvex finite-dimensional polynomial optimization. Fi-
nally, we conclude with Chapter 4 on nonconvex infinite-dimensional optimization on solutions
of polynomial differential equations, and a last Chapter 5 on extensions to polynomial optimal
control.
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CHAPTER 2

Conic optimization

1. Convex cones

In this section we describe linear programming over convex cones in finite dimensional Euclidean
spaces.

Definition 2.1 (Convex set). A set K is convex if x1, x2 ∈ K implies λx1 + (1 − λ)x2 ∈ K for
all λ ∈ [0, 1].

Geometrically speaking, a set is convex whenever the line segment linking two of its points
belongs to the set.

Definition 2.2 (Convex hull). Given a set K, its convex hull, denoted by convK, is the smallest
closed convex set which contains K.

The convex hull can be expressed as

convK :=
{

N∑
k=1

λkxk : N ∈ N, xk ∈ K, λk ≥ 0,
N∑
k=1

λk = 1
}
.

The convex hull of finitely many points conv{x1, . . . , xN} is a polytope with vertices at these
points. A theorem by Carathéodory states that given a set K ⊂ Rn, every point of convK can be
expressed as

∑n+1
k=1 λkxk for some choice of xk ∈ K, λk ≥ 0,

∑n+1
k=1 λk = 1.

Definition 2.3 (Cone). A set K is a cone if λ ≥ 0, x ∈ K implies λx ∈ K.

It follows that a convex cone is a set which is invariant under addition and multiplication by
non-negative scalars.

Let us denote the scalar product of two vectors x, y of Rn as follows:

〈x, y〉 := x′y =
n∑
k=1

xkyk

where the prime, applied to a vector or a matrix, denotes the transpose. More generally, we use
the prime to denote the dual vector space:

Definition 2.4 (Dual space). The dual of a vector space V is the space V ′ of all linear functionals
on V .

When applied to a cone, the prime denotes the dual cone:

Definition 2.5 (Dual cone). The dual of a cone K is the cone
K ′ := {y ∈ Rn : 〈x, y〉 ≥ 0, ∀x ∈ K}.

Geometrically, the dual cone of K is the set of all nonnegative linear functions on K. Notice
that the dual K ′ is always a closed convex cone and that K ′′ is the closure of the conic hull, i.e. the
smallest convex cone that contains K. In particular, if K is a closed convex cone, then K ′′ = K.
A cone K such that K ′ = K is called self-dual.

A cone K is pointed if K ∩ (−K) = {0} and solid if the interior of K is not empty. A cone
which is convex, closed, pointed and solid is called a proper cone. The dual cone of a proper cone
is also a proper cone. A proper cone K induces a partial order (a binary relation that is reflexive,
antisymmetric and transitive) on the vector space: x1 ≥ x2 if and only if x1 − x2 ∈ K.

Definition 2.6 (Linear cone). The linear cone, or positive orthant, is the set
{x ∈ Rn : xk ≥ 0, k = 1, . . . , n}.
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Definition 2.7 (Quadratic cone). The quadratic cone, or Lorentz cone, is the set

{x ∈ Rn : x1 ≥
√
x2

2 + · · ·+ x2
n}.

Let Sn denote the Euclidean space of n-by-n symmetric matrices of Rn×n, equipped with the
inner product

〈X,Y 〉 := traceX ′Y =
n∑
i=1

n∑
j=1

xijyij

defined for two matrices X, Y with respective entries xij , yij , i, j = 1, . . . , n.

Definition 2.8 (Gram matrix). Given a real quadratic form f : Rn → R, the (unique) matrix
X ∈ Sn such that f(y) = y′Xy is called the Gram matrix of f .

Definition 2.9 (Positive semidefinite matrix). A matrix is positive semidefinite when it is the
Gram matrix of a nonnegative quadratic form.

In other words, a matrix X ∈ Sn is positive semidefinite, denoted by X ≥ 0, if and only if
y′Xy ≥ 0, ∀y ∈ Rn or equivalently, if and only if the minimum eigenvalue of X is non-negative.
This last statement makes sense since symmetric matrices have only real eigenvalues.

Definition 2.10 (Semidefinite cone). The semidefinite cone, or cone of positive semidefinite ma-
trices, is the set

{X ∈ Sn : X ≥ 0}.

Proposition 2.1 (Self-dual cones). The linear, quadratic and semidefinite cones are self-dual
convex cones.

Note finally that if K = Rn is interpreted as a cone, then its dual K ′ = {0} is the zero cone,
which contains only the zero vector of Rn.

2. Primal and dual conic problems

Conic programming is linear programming in a convex cone K: we want to minimize a linear
function over the intersection of K with an affine subspace:

(2.1)
p∗ = inf c′x

s.t. Ax = b
x ∈ K

where the infimum is w.r.t. a vector x ∈ Rn to be found, and the given problem data consist
of a matrix A ∈ Rm×n, a vector b ∈ Rm and a vector c ∈ Rn. Note that the feasibility set
{x ∈ Rn : Ax = b, x ∈ K} is not necessarily closed, so that in general we speak of an infimum,
not of a minimum.

If K = Rn, the whole Euclidean space, or free cone, then problem (2.1) amounts to solving
a linear system of equations. If K is the linear cone, then solving problem (2.1) is called linear
programming (LP). If K is the quadratic cone, then this is called (convex) quadratic programming
(QP). If K is the semidefinite cone, then this is called (linear) semidefinite programming
(SDP).

In standard mathematical programming terminology, problem (2.1) is called the primal problem,
and p∗ denotes its infimum. The primal conic problem has a dual conic problem:

(2.2)
d∗ = sup b′y

s.t. z = c−A′y
z ∈ K ′.

Note that from Proposition 2.1, if K is the direct product of linear, quadratic and semidefinite
cones, then K ′ = K. If K contains a free cone, then the corresponding components in K ′ are zero:
we can enforce equality constraints on some entries in vector z in dual problem (2.2), and they
correspond to unrestricted entries in vector x in primal problem (2.1).
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Example 2.1. If K is the direct product of a 2-dimensional free cone with a 2-dimensional LP
cone and a 2-dimensional SDP cone, then in primal problem (2.1) the constraint x ∈ K ⊂ R7 can
be expressed entrywise as:

x1 free , x2 free,
x3 ≥ 0, x4 ≥ 0,(
x5 x6
x6 x7

)
≥ 0

and in dual problem (2.2) the constraint z ∈ K ′ ⊂ R7 can be expressed entrywise as:

z1 = 0, z2 = 0,
z3 ≥ 0, z4 ≥ 0,(
z5 z6
z6 z7

)
≥ 0.

If K consists of only one semidefinite cone, primal problem (2.1) can be written as follows:

(2.3)
p∗ = inf 〈C,X〉

s.t. AX = b
X ≥ 0

where the given problem data consist now of a linear operator A : Sn → Rm, a vector b ∈ Rm
and a matrix C ∈ Sn. The action of operator A is described entrywise as 〈Ak, X〉 = bk, for given
matrices Ak ∈ Sn, k = 1, . . . ,m. The adjoint or dual operator A′ : (Rm)′ = Rm → (Sn)′ = Sn is
the unique linear map such that 〈A′y,X〉 = 〈y,AX〉 for all X ∈ Sn and y ∈ Rm. More concretely,
A′y =

∑m
k=1 Akyk.

Primal SDP problem (2.3) has a dual SDP problem:

(2.4) d∗ = sup 〈b, y〉
s.t. C −A′y ≥ 0

where the supremum is w.r.t. a vector y ∈ Rm.

Example 2.2. The primal SDP problem

p∗ = inf x11 + x22 + x33
s.t. −2x21 = 1

−2x31 = 1
−2x32 = 1 x11 x21 x31

x21 x22 x32
x31 x32 x33

 ≥ 0

has a dual SDP problem
d∗ = sup y1 + y2 + y3

s.t.

 1 y1 y2
y1 1 y3
y2 y3 1

 ≥ 0.

Both problems share the data

A1 = −

 0 1 0
1 0 0
0 0 0

 , A2 = −

 0 0 1
0 0 0
1 0 0

 , A3 = −

 0 0 0
0 0 1
0 1 0


and

b =

 1
1
1

 , C =

 1 0 0
0 1 0
0 0 1


on the 3-dimensional SDP cone K = K ′.
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3. Spectrahedra and LMIs

The convex feasibility sets of problems (2.1) and (2.2) are intersections of a convex cone with an
affine subspace. We would like to understand the geometry of these sets. In particular, we would
like to know whether a given convex set can be modeled like this.

The most general case relevant for our purposes is when K is the direct product of semidefinite
cones. Indeed, note first that every linear cone is the direct product of one-dimensional quadratic
cones, or equivalently, of one-dimensional semidefinite cones. Second, note that a quadratic cone
is a particular affine section of the semidefinite cone:

{x ∈ Rn : x1 ≥
√
x2

2 + · · ·+ x2
n} = {x ∈ Rn :


x1 x2 · · · xn
x2 x1 0
...

. . .
...

xn 0 · · · x1

 ≥ 0}.

It follows that every set that can be represented as an affine section of direct products of the linear
and quadratic cone can be represented as an affine section of direct products of the semidefinite
cone. Finally, note that a direct product of semidefinite cones can be expressed as an affine section
of a single semidefinite cone, e.g.

{x ∈ R4 : x1 ≥ 0,
(
x2 x3
x3 x4

)
≥ 0} = {x ∈ R4 :

 x1 0 0
0 x2 x3
0 x3 x4

 ≥ 0}.

For this reason, in most of the remainder of this document, we consider a single semidefinite cone
constraint.

Definition 2.11 (LMI). A linear matrix inequality (LMI) is a constraint

F0 +
n∑
k=1

xkFk ≥ 0

on a vector x ∈ Rn, where matrices Fk ∈ Sm, k = 0, 1, . . . , n are given.

Note that an LMI constraint is generally nonlinear, but it is always convex. To prove convexity,
rewrite the LMI constraint as

y′

(
F0 +

n∑
k=1

xkFk

)
y = (y′F0y) +

n∑
k=1

(y′Fky)xk ≥ 0

which models infinitely many linear constraints on x ∈ Rn, parametrized by y ∈ Rm.

Definition 2.12 (Spectrahedron, or LMI set). A spectrahedron is a set described by an LMI:

{x ∈ Rn : F0 +
n∑
k=1

xkFk ≥ 0}

where matrices Fk ∈ Sm, k = 0, 1, . . . , n are given.

In other words, spectrahedra are affine sections of the semidefinite cone, or equivalently, LMI
sets. Note that in the case where matrices Fk, k = 0, 1, . . . , n all commute (e.g. if they are all
diagonal), the LMI reduces tom affine inequalities, and the spectrahedron reduces to a polyhedron.

On Figure 3.1 we represent a spectrahedron in the case n = 3 and m = 5. We observe that its
boundary is almost everywhere smooth and curved outwards (by convexity), but it also includes
vertices and edges.

Let R[x] denote the ring of polynomials of the indeterminate x ∈ Rn with real coefficients. Given
a polynomial f ∈ R[x], we define its set of zeros, or level set, as {x ∈ Rn : f(x) = 0}. We define its
open superlevel set as {x ∈ Rn : f(x) > 0}, and its closed superlevel set as {x ∈ Rn : f(x) ≥ 0}.
Note that these sets are defined in Rn, not in Cn, since in this document we are mainly concerned
with optimization.

Definition 2.13 (Algebraic set). An algebraic set is an intersection of finitely many polynomial
level sets.
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Figure 3.1: A spectrahedron.

Definition 2.14 (Semialgebraic set). A semialgebraic set is a union of finitely many intersections
of finitely many open polynomial superlevel sets.

Definition 2.15 (Closed basic semialgebraic set). A closed basic semialgebraic set is an intersec-
tion of finitely many closed polynomial superlevel sets.

Now, let us denote by

F (x) := F0 +
n∑
k=1

xkFk

the affine symmetric matrix describing a spectrahedron, and build its characteristic polynomial

t 7→ det (tIm + F (x)) =
m∑
k=0

fm−k(x)tk

which is monic, i.e. f0(x) = 1. Coefficients fk ∈ R[x], k = 1, . . . ,m are multivariate polynomials
called the defining polynomials of the spectrahedron. They are elementary symmetric functions of
the eigenvalues of F (x).

Proposition 2.2 (Spectrahedra are closed basic semialgebraic sets). A spectrahedron can be ex-
pressed as follows:

{x ∈ Rn : F0 +
n∑
k=1

xkFk ≥ 0} = {x ∈ Rn : fk(x) ≥ 0, k = 1, . . . ,m}.

Example 2.3 (The pillow). As an elementary example, consider the pillow spectrahedron

X := {x ∈ R3 : F (x) :=

 1 x1 x2
x1 1 x3
x2 x3 1

 ≥ 0}

and its defining polynomials
f1(x) = trace F (x) = 3,
f2(x) = 3− x2

1 − x2
2 − x2

3,
f3(x) = detF (x) = 1 + 2x1x2x3 − x2

1 − x2
2 − x2

3,

On Figure 3.2 we represent the Cayley cubic surface

{x ∈ R3 : f3(x) = 0}

which is the algebraic closure of the boundary of the pillow spectrahedron (the inner convex region)

X = {x ∈ R3 : f2(x) ≥ 0, f3(x) ≥ 0}.

In other words, the polynomial which vanishes along the boundary of X also vanishes outside of
X, along the Cayley cubic surface.
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Figure 3.2: The Cayley cubic surface and its spectrahedron.

4. Spectrahedral shadows and lifted LMIs

We have seen that a spectrahedron is a closed basic semialgebraic set. Moreover, it is a convex
set. All spectrahedra are convex closed basic semialgebraic, so one may then wonder conversely
whether all convex closed basic semialgebraic sets are spectrahedra. The answer is negative, even
though we do not explain why in this document.

Proposition 2.3 (The TV screen is not a spectrahedron). The planar convex closed basic semi-
algebraic set

{x ∈ R2 : 1− x4
1 − x4

2 ≥ 0}
is not a spectrahedron.

Consequently, in order to represent convex closed basic semialgebraic sets, we have to go beyond
affine sections of the semidefinite cone. This motivates the following definitions.

Definition 2.16 (Lifted LMI, liftings). A lifted LMI is a constraint

F0 +
n∑
k=1

xkFk +
p∑
l=1

ulGl ≥ 0

on a vector x ∈ Rn, which implies additional variables u ∈ Rp called liftings, and where matrices
Fk ∈ Sm, k = 0, 1, . . . , n and Gl ∈ Sm, l = 1, . . . , p are given.

Definition 2.17 (Spectrahedral shadow, or lifted LMI set). A spectrahedral shadow is the affine
projection of a spectrahedron:

{x ∈ Rn : F0 +
n∑
k=1

xkFk +
p∑
l=1

ulGl ≥ 0, u ∈ Rp}

where matrices Fk ∈ Sm, k = 0, 1, . . . , n and Gl ∈ Sm, l = 1, . . . , p are given.

Spectrahedral shadows are also called semidefinite representable sets.

Example 2.4 (The TV-screen is a spectrahedral shadow). The planar convex closed basic semi-
algebraic set

{x ∈ R2 : 1− x4
1 − x4

2 ≥ 0}
can be expressed as the spectrahedral shadow{

x ∈ R2 :
(

1− u1 u2
u2 1 + u1

)
≥ 0,

(
1 x1
x1 u1

)
≥ 0,

(
1 x2
x2 u2

)
≥ 0, u ∈ R2

}
.
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Proposition 2.4 (Planar semialgebraic sets are spectrahedral shadows). Every planar convex
closed semialgebraic set is a spectrahedral shadow.

Conjecture 2.1 (Are convex semialgebraic sets spectrahedral shadows ?). Every convex closed
semialgebraic set is a spectrahedral shadow.

5. SDP duality

In this section we sketch some algorithms for linear semidefinite programming (SDP). For
notational simplicity we consider only the case of a single semidefinite cone, with given data
A : Sn → Rm, b ∈ Rm and C ∈ Sn. We want to solve the primal SDP problem (2.3) and its dual
SDP problem (2.4) reproduced here for the reader’s convenience:

p∗ = inf 〈C,X〉
s.t. AX = b

X ≥ 0

d∗ = sup 〈b, y〉
s.t. Z = C −A′y

Z ≥ 0.
Define the feasibility sets

P := {X ∈ Sn : AX = b, X ≥ 0}, D := {y ∈ Rm : C −A′y ≥ 0}.
Most of the algorithms for solving SDP problems make use of the following elementary duality
properties.

Proposition 2.5 (Weak duality). If P and D are nonempty, it holds p∗ ≥ d∗.

Indeed, if P and D are nonempty, there exist X ∈ P and y ∈ D. Letting Z := C −A′y it holds
p∗ − d∗ = 〈C,X〉 − 〈b, y〉 = 〈X,Z〉 ≥ 0

since X ≥ 0 and Z ≥ 0.

Proposition 2.6 (Strong duality). If P has nonempty interior and D is nonempty, then the
supremum d∗ is attained and p∗ = d∗. Similarly, if D has nonempty interior and P is nonempty,
then the infimum p∗ is attained and p∗ = d∗.

Note in passing that whenever X ≥ 0, Z ≥ 0, the scalar condition p∗ − d∗ = 〈X,Z〉 = 0 is
equivalent to the nonsymmetric matrix condition XZ = 0 or to the symmetric matrix condition
XZ + ZX = 0.

6. Numerical SDP solvers

Here we briefly describe numerical methods, implemented in floating-point arithmetic, to solve
SDP problems. The most successful algorithms are primal-dual interior-point methods.

A triple (X, y, Z) solves the primal-dual SDP problems (2.3)-(2.4) if and only if
AX = b, X ≥ 0 (primal feasibility)

A′y + Z = C, Z ≥ 0 (dual feasibility)
XZ = 0 (complementarity).

The key idea behind primal-dual interior-point methods is then to consider the nonlinear system
of equations

(6.1)
AX = b

A′y + Z = C
XZ = µIn

parametrized in the scalar µ > 0. These are necessary and sufficiently optimality conditions for
the strictly convex problem

inf 〈C,X〉+ µf(X)
s.t. AX = b

where f(X) := − log detX is a barrier function for the semidefinite cone (strictly convex and finite
in its interior, and infinite elsewhere). For this reason, scalar µ is called the barrier parameter.

If P and D have nonempty interior, it can be shown that for a given µ > 0, system (6.1) has a
unique solution such that X > 0 and Z > 0, and hence the set {(X(µ), y(µ), Z(µ)) : µ > 0} defines
a smooth curve parametrized by µ, called the central path. The interior-point algorithm consists
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then in applying Newton’s method to minimize a weighted sum of the linear objective function and
the barrier function, by following the central path, letting µ→ 0. Given initial feasible solutions,
this generates a sequence of feasible solutions such that the duality gap 〈C,X〉 − 〈b, y〉 is less that
a given threshold ε > 0 after O(

√
n log ε−1) iterations. Each Newton iteration requires:

• O(n2m) operations to evaluate the barrier function;
• O(n3m) operations to evaluate and store its gradient;
• O(n2m2) operations to evaluate and store its Hessian;
• O(m3) operations to solve the Newton linear system of equations.

A symmetric matrix of size n has O(n2) independent entries, so in general we may assume that
m = O(n2) and hence the dominating term in this rough complexity analysis comes from the
evaluation and storage of the Hessian of the barrier function. Data sparsity and block structure
must be exploited as much as possible in these steps. It follows that a global worst-case asymptotic
complexity estimate for solving a dense SDP problem is O(n6.5 log ε−1). In practice the observed
computational burden is much smaller, but it strongly depends on the specific implementation and
on the problem structure.

Newton’s method needs an initial feasible point, and if no such point is available, an auxilliary
SDP problem must be solved first. An elegant approach to bypass the search of an initial point
consists of embedding the primal-dual problem in a larger problem which is its own dual and
for which a trivial feasible starting point is known: this is the so-called homogeneous self-dual
embedding. A drawback of this approach is that iterates are primal and dual feasible for the
original SDP problems only when the barrier parameter vanishes.

The most successful semidefinite programming solvers are implementations of primal-dual interior-
point algorithms:

• SeDuMi, SDPT3, MOSEK: homogenous self-dual embedding;
• CSDP, SDPA: path-following predictor-corrector;
• DSDP: path-following with dual-scaling;

but there are also other implementations based on different algorithms:
• LMILAB: projective method;
• PENSDP: penalty and augmented Lagrangian.

There exist parallel implementations of CSDP and SDPA.
Most of these solvers are available under Matlab, and they are interfaced through the parsers

YALMIP and cvx. Some elementary SDP solver is available under Scilab and Sage, and cvxopt is
a Python interface with some SDP features. The solver CSDP can be embedded in C language, the
solver SDPA is also available with Python interface, and PENSDP is available as a standalone solver
or called in Fortran or C language.

7. Rigorous SDP solvers

The numerical methods described in the previous sections are implementable in floating-point
arthimetic, but very little is known about backward stability of these algorithms. More annoyingly,
it is difficult to estimate or bound the conditioning of a SDP problem, which implies that none of
these numerical solvers can provide a priori guarantees about the quality of their output, even for
a restricted problem class.

To address this issue, various strategies can be followed:
• multiprecision arithmetic;
• interval arithmetic;
• symbolic computation.

Higher precision or arbitrary precision arithmetic allows to deal with better floating-point ap-
proximations of real numbers, at the price of an increased computational burden. Currently, the
solver SDPA is available in quad-double precision, double-double precision and arbitrary precision
arithmetic.

Interval arithmetic can be used to obtain rigorous bounds on the output of numerical SDP
solvers. A Matlab implementation of a verified SDP solver is VSDP. It relies on the Intlab toolbox
for interval computations.
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Symbolic computation can be used to solve SDP problems exactly, by solving (e.g. with Gröbner
basis techniques) the quadratic system of equations arising from optimality conditions. Alterna-
tively, feasible points in spectrahedra can be obtained by techniques for finding real solutions of
systems of polynomial equations and inequalities.

To justify further the need for these techniques, note first that there are SDP problems with
integer data with no solution among the rationals:

Example 2.5 (Irrational optimal solution). The problem
sup y

s.t.
(

1 y
y 2

)
≥ 0

has solution y∗ =
√

2.

Example 2.6 (Irrational spectrahedron).

{y ∈ R :
(

1 y
y 2

)
≥ 0,

(
2y 2
2 y

)
≥ 0} = {

√
2}.

In general, exact solutions of SDP problems must be found in algebraic extensions of the ground
field of the input data. Recall that when both primal and dual problems have nonempty interiors,
solutions (X, y) are characterized by the optimality conditions (6.1) with µ = 0, i.e.

(7.1) 〈Ak, X〉 = bk, k = 1, . . . ,m
X(C −

∑m
k=1 ykAk) = 0n.

This is a system of m + n(n + 1)/2 real linear and quadratic equations in m + n(n + 1)/2 real
variables. If we have a basis for the nullspace of the operator A, we can remove the first m equality
constraints and derive a system of n(n+ 1)/2 quadratic equations in n(n+ 1)/2 variables.

Example 2.7 (Irrational optimal solution, again). Optimality conditions for the problem of Ex-
ample 2.5 are as follows:

−x21 = 1
x11 + yx21 = 0
x21 + yx22 = 0
yx21 + 2x22 = 0

⇐⇒

x11 = ±
√

2
x21 = −1
x22 = ±

√
2

2
y = ±

√
2

from which it follows that the primal-dual optimal solution is

X∗ =
( √

2 −1
−1

√
2

2

)
y∗ =

√
2.

In the classical Turing machine model of computation, an integer number N is encoded in binary
notation, so that its bit size is log2 N + 1. The following spectrahedron with integer coefficients
has points with exponential bit size:

Example 2.8 (Exponential spectrahedron). Any point in the spectrahedron

{y ∈ Rm :
(

1 2
2 y1

)
≥ 0,

(
1 y1
y1 y2

)
≥ 0, · · · ,

(
1 ym−1

ym−1 ym

)
≥ 0}

satisfies ym ≥ 22m .

Example 2.9 (Algebraic solution). Consider the problem
sup y1 + y2 + y3

s.t.


1 + y3 y1 + y2 y2 y2 + y3
y1 + y2 1− y1 y2 − y3 y2
y2 y2 − y3 1 + y2 y1 + y3

y2 + y3 y2 y1 + y3 1− y3

 ≥ 0.

Optimality conditions (7.1) yield 13 equations in 13 unknowns. Using Gröbner basis techniques, it
is found that these equations have 26 complex solutions. The optimal first variable y∗1 is the root of

I–15



Didier Henrion

a degree 26 univariate polynomial with integer coefficients. This polynomial factors into a degree
16 term

403538653715069011y16
1 − 2480774864948860304y15

1 + · · ·+ 149571632340416
and a degree 10 term

2018y10
1 − 12156y9

1 + 17811y8
1 + · · · − 163

both irreducible in Q[y1]. The optimal solution y∗1 is therefore an algebraic number of degree
16 over Q, and it can be checked that it is also the case for the other 12 optimal coordinates
y∗2 , y

∗
3 , x
∗
11, x

∗
21, . . . , x

∗
44.

The above examples indicate that it can be quite costly to solve an SDP problem exactly. The
algebraic degree of an SDP problem is the degree of the algebraic extension of the problem data
coefficient field over which the solutions should be found. Even for small n and m, this number
can be very large.

8. Notes and references

References on convex analysis are [51] and [22]. See [6] for an elementary introduction to
convex optimization, and [3] for a more advanced treatment aimed at applied mathematicians
and engineers. Systems control applications of linear matrix inequalities are described in [5].
Good historical surveys on SDP are [58] and [57]. Classifications of sets and functions that can be
represented by affine sections and projections of LP, QP and SDP cones can be found in [38], [3] and
[35]. Elementary concepts of algebraic geometry (algebraic sets, semialgebraic sets) are surveyed
in [8], and connections between SDP, convex geometry and algebraic geometry are explored in [4].
Proposition 2.2 is proved in [49, Theorem 20]. Example 2.3 comes from the SDP relaxation of a
3-dimensional MAXCUT problem, a classical problem of combinatorial optimization, see [33] and
also [40, Example 2] for the link with the Cayley cubic. The example of Proposition 2.3 was studied
in [16]. The proof of Proposition 2.4 can be found in [56]. Conjecture 2.1, a follow-up of a question
posed in [35, Section 4.3.1], can be found in [17]. A basic account of semidefinite programming
duality (Propositions 2.6 and 2.5), as well as Examples 2.6 and 2.8 can be found in [33, Section
2]. Techniques of real algebraic geometry for finding rational points in convex semialgebraic sets
are described in [55]. Example 2.9 is taken from [40, Example 4], which describes an approach
to quantifying the complexity of solving exactly an SDP problem. Hyperlinks to SDP solvers can
be found easily, and the online documentation of the interface YALMIP contains many pointers to
webpages and software packages.
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CHAPTER 3

Finite-dimensional polynomial optimization

1. Measures and moments

Let X be a compact subset of the Euclidean space Rn. Let B(X) denotes the Borel σ-algebra,
defined as the smallest collection of subsets of X which contains all open sets.
Definition 3.1 (Signed measure). A signed measure is a function µ : B(X)→ R∪{∞} such that
µ(∅) = 0 and µ(∪k∈NXk) =

∑
k∈N µ(Xk) for any pairwise disjoint Xk ∈ B(X).

Definition 3.2 (Positive measure). A positive measure is a signed measure which takes only
nonnegative values.

Positive measures on the Borel σ-algebra are often called Borel measures, and positive measures
which take finite values on compact sets are often called Radon measures.
Definition 3.3 (Support). Given a measure µ its support spt µ is the closed set of all points x
such that µ(A) 6= 0 for every neighborhood A of x. We say that µ is supported on a set A whenever
spt µ ⊂ A.
Definition 3.4 (Probability measure). A probability measure µ on X is a positive measure such
that µ(X) = 1.

Let us denote by M+(X) the cone of positive measures supported on X, and by P(X) the set
of probability measures supported on X. Geometrically, P(X) is an affine section of M+(X).
Example 3.1 (Lebesgue measure). The Lebesgue measure on Rn, also called uniform measure,
denoted λ, is a positive measure returning the volume of a set A. For instance, when n = 1 and
a ≤ b, λ([a, b]) = b− a.
Example 3.2 (Dirac measure). The Dirac measure at x = ξ, denoted _ξ(dx) or δx=ξ, is a
probability measure such that δξ(A) = 1 if ξ ∈ A, and δξ(A) = 0 if ξ /∈ A.

For a given compact set X ⊂ Rn, let M (X) denote the Banach space of signed measures
supported on X, so that a measure µ ∈ M (X) can be interpreted as a function that takes any
subset of X and returns a real number. Alternatively, elements of M (X) can be interpreted as
linear functionals acting on the Banach space of continuous functions C (X), that is, as elements
of the dual space C (X)′, see Definition 2.4. The action of a measure µ ∈M (X) on a test function
v ∈ C (X) can be modeled with the duality pairing

〈v, µ〉 :=
∫
X

v(x) dµ(x).

Let us denote by C+(X) the cone of positive continuous functions on X, whose dual can be
identified to the cone of positive measures on X, i.e. M+(X) = C+(X)′.
Definition 3.5 (Monomial). Given a real vector x ∈ Rn and an integer vector α ∈ Nn, a monomial
is defined as

xα :=
n∏
k=1

xαk

k .

The degree of a monomial with exponent α ∈ Nn is equal to |α| :=
∑n
k=1 αk.

Definition 3.6 (Moment). Given a measure µ ∈M (X), the real number

(1.1) yα :=
∫
X

xαµ(dx)

is called its moment of order α ∈ Nn.
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Example 3.3. For x ∈ R2, second order moments are

y20 =
∫
x2

1µ(dx), y11 =
∫
x1x2µ(dx), y02 =

∫
x2

2µ(dx).

The sequence (yα)α∈Nn is called the sequence of moments of the measure µ, and given d ∈ N,
the truncated sequence (yα)|α|≤d is the vector of moments of degree d.

Definition 3.7 (Representing measure). If y is the sequence of moments of a measure µ, i.e. if
identity (1.1) holds for all α ∈ Nn, we say that µ is a representing measure for y.

A basic problem in the theory of moments concerns the characterization of (infinite or truncated)
sequences that are moments of some measure. Practically speaking, instead of manipulating a
measure, which is a rather abstract object, we manipulate its moments. Indeed, a measure on a
compact set is uniquely determined by the (infinite) sequence of its moments.

2. Riesz functional, moment and localizing matrices

Measures on X ⊂ Rn are manipulated with their moments, i.e. via their actions on monomials.
The choice of monomials (xα)α is motivated mainly for notational and simplicity reasons. In
particular, the product of two monomials is a monomial, i.e. xαxβ = xα+β . Any other choice of
basis (bα(x))α would be appropriate to manipulate measures, as soon as the basis is dense w.r.t.
the supremum norm in the space of continuous functions C (X). Numerically speaking, other bases
than monomials may be more appropriate, but we do not elaborate further on this issue in this
document.

In order to manipulate functions in C (X) we use polynomials. A polynomial p ∈ R[x] of degree
d ∈ N is understood as a linear combination of monomials:

p(x) :=
∑
|α|≤d

pαx
α

and p := (pα)|α|≤d is the vector of its coefficients in the monomial basis (xα)α. Note that we use
the same notation for a polynomial and for its vector of coefficients when no ambiguity is possible.
Otherwise we use the notation p(x) to emphasize that we deal the polynomial as a function, not
as a vector.

Example 3.4. The polynomial
x ∈ R2 7→ p(x) = 1 + 2x2 + 3x2

1 + 4x1x2

has a vector of coefficients p ∈ R6 with entries p00 = 1, p10 = 0, p01 = 2, p20 = 3, p11 = 4,
p02 = 0.

Definition 3.8 (Riesz functional). Given a sequence y = (yα)α∈Nn , we define the Riesz linear
functional `y : R[x] → R which acts on polynomials p(x) =

∑
α pαx

α as follows: `y(p(x)) =∑
α pαyα.

We can interpret the Riesz functional as an operator that linearizes polynomials. If sequence y
has a representing measure µ, integration of a polynomial p w.r.t. µ is obtained by applying the
Riesz functional `y on p, since

`y(p) =
∑
α

pαyα =
∑
α

pα

∫
xαµ(dx) =

∫ ∑
α

pαx
αµ(dx) =

∫
p(x)µ(dx).

Note that formally the Riesz functional is the linear form p(x) 7→ `y(p(x)) and its existence is
independent of the choice of basis to represent polynomial p(x). However, for notational simplicity,
we use the monomial basis and hence we represent explicitly the Riesz functional with the inner
product of the vector (pα)|α|≤d of coefficients of the polynomial with the truncated sequence
(yα)|α|≤d.

Example 3.5. For the polynomial of Example 3.4, the Riesz functional reads
p(x) = 1 + 2x2 + 3x2

1 + 4x1x2 7→ `y(p) = y00 + 2y01 + 3y20 + 4y11.

If we apply the Riesz functional on the square of a polynomial p(x), then we obtain a form
which is quadratic in the coefficients of p(x):
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Definition 3.9 (Moment matrix). The moment matrix of order d is the Gram matrix of the
quadratic form p(x) 7→ `y(p2(x)) where polynomial p(x) has degree d, i.e. the matrix Md(y) such
that `y(p2(x)) = p′Md(y)p.

Example 3.6. If n = 2 then

M0(y) = y00, M1(y) =

 y00 y10 y01
y10 y20 y11
y01 y11 y02

 , M2(y) =


y00 y10 y01 y20 y11 y02
y10 y20 y11 y30 y21 y12
y01 y11 y02 y21 y12 y03
y20 y30 y21 y40 y31 y22
y11 y21 y12 y31 y22 y13
y02 y12 y03 y22 y13 y04

 .

Note that Md(y) ∈ S(n+d
n ) where(

n+ d

n

)
=
(
n+ d

d

)
= (n+ d)!

n! d!
is the number of monomials of n variables of degree at most d. The rows and columns of the
moment matrix are indexed by vectors α ∈ Nn and β ∈ Nn. Inspection reveals that indeed the
entry (α, β) in the moment matrix is the moment yα+β . By construction, the moment matrix
Md(y) is symmetric and linear in y.

If we apply the Riesz functional on the product of the square of a polynomial p(x) of degree d
with a given polynomial q(x), then we obtain a form which is quadratic in the coefficients of p(x).

Definition 3.10 (Localizing matrix). Given a polynomial q(x), its localizing matrix of order d is
the Gram matrix of the quadratic form p(x) 7→ `y(q(x)p2(x)) where polynomial p(x) has degree d,
i.e. the matrix Md(q y) such that `y(q(x)p2(x)) = p′Md(q y)p.

Note that we use the notationMd(qy) to emphasize the fact that the localizing matrix is bilinear
in q and y. When polynomial q(x) =

∑
α qαx

α is given, matrix Md(q y) is symmetric and linear
in y. The localizing matrix can be interpreted as a linear combination of moment matrices, in the
sense that its entry (α, β) is equal to

∑
γ qγyα+β+γ .

Example 3.7. If n = 2 and q(x) = 1 + 2x1 + 3x2 then

M1(q y) =

 y00 + 2y10 + 3y01 y10 + 2y20 + 3y11 y01 + 2y11 + 3y02
y10 + 2y20 + 3y11 y20 + 2y30 + 3y21 y11 + 2y21 + 3y12
y01 + 2y11 + 3y02 y11 + 2y21 + 3y12 y02 + 2y12 + 3y03

 .

Finally, given an infinite-dimensional sequence y, let us denote the infinite dimensional moment
and localized matrices, or linear operators, as follows

M(y) := M∞(y), M(q y) := M∞(q y).

3. Linking measures and moments

The matrices just introduced allow to explicitly model the constraint that a sequence y has a
representing measure µ on a compact basic semialgebraic set X. Under a mild assumption on the
representation of X, it turns out that this constraint is an infinite-dimensional LMI.

Assumption 3.1 (Compactness). Assume that X is a compact basic semialgebraic set

X := {x ∈ Rn : pk(x) ≥ 0, k = 1, . . . , nX}

for given pk ∈ R[x], k = 1, . . . , nX . Moreover, assume that one of the polynomial inequalities
pk(x) ≥ 0 is of the form R−

∑n
i=1 x

2
i ≥ 0 where R is a sufficiently large positive constant.

On the one hand, Assumption 3.1 is a little bit stronger than compactness of X. On the other
hand, if we assume only that X is compact, this is without loss of generality that a constraint can
be added to the description of X so that Assumption 3.1 is satisfied.

Proposition 3.1 (Putinar’s Theorem). Let set X satisfy Assumption 3.1. Then sequence y has
a representing measure in M+(X) if and only if M(y) ≥ 0 and M(pk y) ≥ 0, k = 1, . . . , nX .
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Note that if we have an equality constraint pk(x) = 0 instead of an inequality constraint in the
definition of X, the corresponding localizing constraint becomes M(pk y) = 0, which is a set of
linear equations in y.

Since matrices M(y) and M(pk y) are symmetric and linear in y, sequences with representing
measures belong to an infinite-dimensional spectrahedron, following the terminology introduced in
Section 3. To manipulate these objects, we will consider finite-dimensional truncations.

4. Measure LP

Let X be the compact basic semialgebraic set defined above for given polynomials pk ∈ R[x],
k = 1, . . . , nX , and satisfying Assumption 3.1. Let p0 ∈ R[x] be a given a polynomial. Consider
the optimization problem consisting of minimizing p0 over X, namely

(4.1) p∗ = min p0(x)
s.t. pk(x) ≥ 0, k = 1, . . . , nK .

The above minimum is w.r.t. x ∈ Rn and since we assume that X is compact, the minimum is
attained at a given point x∗ ∈ X.

We do not have any convexity property on p0 or X, so that problem (4.1) may feature several
local minima, and possibly several global minima. In the sequel we describe a hierarchy of LMI
relaxations of increasing size, indexed by a relaxation order, and that generates an asymptotically
convergent mononotically nondecreasing sequence of lower bounds on p∗.

The key idea is to notice that nonconvex polynomial optimization problem (4.1) over (finite-
dimensional set) X ⊂ Rn is equivalent to a linear, hence convex, optimization problem over the
(infinite-dimensional set) of probability measures supported on X. More specifically, consider the
problem

(4.2)
p∗M = inf

∫
p0(x)µ(dx)

s.t. µ(X) = 1
µ ∈M+(X)

which is linear in the decision variable µ, a probability measure supported on X.

Proposition 3.2 (Measure LP formulation of polynomial optimization). The infimum in LP
problem (4.2) is attained, and p∗M = p∗.

The proof is immediate: for any feasible ξ ∈ X, it holds p0(ξ) =
∫
p0(x)µ(dx) for the Dirac mea-

sure µ = δξ, showing p∗ ≥ p∗M . Conversely, as p0(x) ≥ p∗ for all x ∈ X, it holds
∫
X
p0(x)µ(dx) ≥∫

X
p∗µ(dx) = p∗

∫
X
µ(dx) = p∗ since µ is a probability measure, which shows that p∗M ≥ p∗. It

follows that p∗M = p∗ and that the infimum in problem (4.2) is attained by a Dirac measure µ = δx∗

where x∗ is a global optimum of problem (4.1).

5. Moment LP

In Section 2 we studied LP problems (2.1) in finite-dimensional cones. In the context of poly-
nomial optimization, we came up with infinite-dimensional LP (4.2) which is a special instance of
the measure LP

(5.1)
p∗ = inf 〈c, µ〉

s.t. Aµ = b
µ ∈M+(X)

where the decision variable µ is in the cone of nonnegative measures supported on X, a given
compact subset of Rn. Linear operator A : M (X) → Rm takes a measure and returns an m-
dimensional vector of real numbers. Vector b ∈ Rm is given. The objective function is the duality
pairing between a given continuous function c ∈ C (X) and µ. Problem (5.1) has a dual (or more
rigorously, a predual) problem in the cone of nonnegative functions, but we will not describe it in
this document.
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If the linear operator A is described through given continuous functions aj ∈ C (X), j = 1, . . . ,m
we can write the LP problem (5.1) more explicitly as

(5.2)
p∗ = inf

∫
X
c(x)µ(dx)

s.t.
∫
X
aj(x)µ(dx) = bj , j = 1, . . . ,m

µ ∈M+(X).

Now suppose that all the functions are polynomials, i.e. aj(x) ∈ R[x], j = 1, . . . ,m, c(x) ∈ R[x],
so that measure µ can be manipulated via the sequence y := (yα)α∈N of its moments (1.1). The
measure LP (5.2) becomes a moment LP

(5.3)
p∗ = inf

∑
α cαyα

s.t.
∑
α ajαyα = bj , j = 1, . . . ,m

y has a representing measure µ ∈M+(X)

called a generalized problem of moments.
The idea is then to use the explicit LMI conditions of Section 3 to model the constraints that

a sequence has a representing measure. If the semialgebraic set

X := {x ∈ Rn : pk(x) ≥ 0, k = 1, . . . , nX}

satisfies Assumption 3.1, problem (5.3) becomes

p∗ = inf
∑
α cαyα

s.t.
∑
α ajαyα = bj , j = 1, . . . ,m

M(y) ≥ 0, M(pk y) ≥ 0, k = 1, . . . , nX
where the constraints

∑
α ajαyα = bj , j = 1, . . . ,m model finitely many linear constraints on

infinitely many decision variables. In the sequel, we will consider finite-dimensional truncations
of this problem, and generate a hierarchy of LMI relaxations called Lasserre’s hierarchy in the
context of polynomial optimization.

Moment LP (5.3) has a dual in the cone of positive polynomials, and finite-dimensional trunca-
tions of this problem correspond to the search of polynomial sum-of-squares representations, which
can be formulated with a hierarchy of dual LMI problems, but we will not elaborate more on this
point in this document.

6. Lasserre’s LMI hierarchy

Now remark that LP problem (4.2) is a special instance of the moment LP problem (5.2) with
data c(x) = p0(x) =

∑
α p0αx

α, a(x) = 1, b = 1, so that, as in Section 5, problem (4.1) can be
equivalently written as

p∗ = inf
∑
α p0αyα

s.t. y0 = 1
M(y) ≥ 0, M(pk y) ≥ 0, k = 1, . . . , nX .

Let us denote by rk the smallest integer not less than half the degree of polynomial pk, k =
0, 1, . . . , nX , and let rX := max{1, r1, . . . , rnX

}. For r ≥ rX , consider Lasserre’s LMI hierarchy

(6.1)
p∗r = inf

∑
α p0αyα

s.t. y0 = 1
Mr(y) ≥ 0, Mr−rk

(pk y) ≥ 0, k = 1, . . . , nX .

The LMI constraints in this problem are truncated, or relaxed versions of the infinite-dimensional
LMI constraints of Proposition 3.1. When the relaxation order r ∈ N tends to infinity, we obtain
the following result.

Proposition 3.3 (Lasserre’s LMI hierarchy converges). It holds p∗r ≤ p∗r+1 ≤ p∗ and limr→∞ p∗r =
p∗.

Lasserre’s LMI relaxations (6.1) can be solved with semidefinite programming, see Chapter 2,
and this provides us with a monotonically nondecreasing sequence of lower bounds on the global
minimum of nonconvex polynomial optimization problem (4.1).
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Proposition 3.4 (Generic finite convergence). In the finite-dimensional space of coefficients of
polynomials pk, k = 0, 1, . . . , nX defining problem (4.1), there is a low-dimensional algebraic set
which is such that if we choose an instance of problem (4.1) outside of this set, then Lasserre’s LMI
relaxations have finite convergence, i.e. there exists a finite r∗ such that p∗r = p∗ for all r ≥ r∗.

Equivalently, finite convergence occurs under arbitrary small perturbations of the data of prob-
lem (4.1), and problems for which finite convergence does not occur are exceptional and degenerate
in some sense.

Example 3.8. Consider the polynomial optimization problem
p∗ = min −x2

s.t. 3− 2x2 − x2
1 − x2

2 ≥ 0
−x1 − x2 − x1x2 ≥ 0
1 + x1x2 ≥ 0

where the minimum is w.r.t. x ∈ R2. The first LMI relaxation is
p∗1 = min −y01

s.t. y00 = 1 y00 y10 y01
y10 y20 y11
y01 y11 y02

 ≥ 0

3y00 − 2y01 − y20 − y02 ≥ 0
−y10 − y01 − y11 ≥ 0
y00 + y11 ≥ 0

and the second LMI relaxation is
p∗2 = min −y01

s.t. y00 = 1
y00 y10 y01 y20 y11 y02
y10 y20 y11 y30 y21 y12
y01 y11 y02 y21 y12 y03
y20 y30 y21 y40 y31 y22
y11 y21 y12 y31 y22 y13
y02 y12 y03 y22 y13 y04

 ≥ 0

 3y00 − 2y01 − y20 − y02 3y10 − 2y11 − y30 − y12 3y01 − 2y02 − y21 − y03
3y10 − 2y11 − y30 − y12 3y20 − 2y21 − y40 − y22 3y11 − 2y12 − y31 − y13
3y01 − 2y02 − y21 − y03 3y11 − 2y12 − y31 − y13 3y02 − 2y03 − y22 − y04

 ≥ 0 −y10 − y01 − y11 −y20 − y11 − y21 −y11 − y02 − y12
−y20 − y11 − y21 −y30 − y21 − y31 −y21 − y12 − y22
−y11 − y02 − y12 −y21 − y12 − y22 −y12 − y03 − y13

 ≥ 0 y00 + y11 y10 + y21 y01 + y12
y10 + y21 y20 + y31 y11 + y22
y01 + y12 y11 + y22 y02 + y13

 ≥ 0.

It can be checked that p∗1 = −2 ≤ p∗2 = p∗ = − 1+
√

5
2 . Note that Assumption 3.1 is satisfied for this

example, since the constraint 3− 2x2 − x2
1 − x2

2 ≥ 0 certifies boundedness of the feasibility set.

7. Global optimum recovery

From Proposition 3.4 we know that finite convergence of Lasserre’s LMI hierarchy is ensured
generically, yet we do not know a priori at which relaxation order it occurs. To certify finite
convergence, we can use the following condition.

Proposition 3.5 (Certificate of finite convergence). Let y∗ be the solution of LMI problem (6.1)
at a given relaxation order r ≥ rX . If

rank Mr−rX
(y∗) = rankMr(y∗)

then p∗r = p∗.
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If the moment matrix rank conditions of Proposition 3.5 are satisfied, then we can use numerical
linear algebra to extract rankMr(y∗) global optima for problem (4.1). However, we do not describe
the algorithm in this document.

Proposition 3.6 (Rank-one moment matrix). The condition of Proposition 3.5 is satisfied if

rank Mr(y∗) = 1.

If the rank condition of Proposition 3.6 is satisfied, first order moments readily yield a global
optimum: x∗ = (y∗α)|α|=1.

Example 3.9. For the polynomial optimization problem of Example 3.8, we obtain at the second
LMI relaxation a rank-one matrix M2(y∗) ≥ 0 and the global optimum x∗1 = y∗10 = 1−

√
5

2 , x∗2 =
y∗01 = 1+

√
5

2 .

8. Complexity estimates

Consider a polynomial optimization problem

p∗ = min p0(x)
s.t. pk(x) ≥ 0, k = 1, . . . , nX

as in (4.1), with x ∈ Rn, and its hierarchy of LMI relaxations (6.1).
Let us denote by M the number of variables, i.e. the size of vector y, in the LMI relaxation of

order r. It is equal to the number of monomials of n variables of degree 2r, namely M =
(
n+2r
n

)
.

If the number of variables n is fixed (e.g. for a given polynomial optimization problem) then M
grows in O(rn), that is polynomially in the relaxation order r. If the relaxation order r is fixed
(say to the smallest possible value, the first LMI relaxation in the hierarchy), then M grows in
O(nr), that is polynomially in the number of variables n.

In practice, given the current state-of-the-art in general-purpose SDP solvers and personal
computers, we can expect an LMI problem to be solved in a matter of a few minutes provided the
problem is reasonably well-conditioned and the number of variables M is less than 5000, say.

9. Convex hulls of semialgebraic sets

Let us use the notations defined in Section 6, and let X be the compact basic semialgebraic set
defined there and satisfying Assumption 3.1. For r ≥ rX consider the spectrahedral shadow

Xd := {(yα)|α|=1 ∈ Rn : y0 = 1, Mr(y) ≥ 0, Mr−rk
(pk y) ≥ 0, k = 1, . . . , nX}.

Proposition 3.7 (Convex outer approximations of semialgebraic sets). Xr is an outer approxi-
mation of X, i.e. X ⊂ Xr. Moreover, Xr+1 ⊂ Xr, and X∞ = convX.

The result is also true if X is a compact algebraic set, defined by finitely many polynomial
equations. In particular, if X is finite-dimensional, i.e. the union of a finite number of points of
Rn, then X∞ is a polytope.

Example 3.10. The polynomial optimization problem of Example 3.8 has a compact basic semi-
algebraic feasible set

X = {x ∈ R2 : 3− 2x2 + x2
1 − x2

2 ≥ 0, −x1 − x2 − x1x2 ≥ 0, 1 + x1x2 ≥ 0}

represented in red on Figure 9.1. The first spectrahedral shadow X1 ⊃ X, corresponding to the
projection on the plane of first-order moments of the 5-dimensional spectrahedron of the first LMI
relaxation, is represented in blue on Figure 9.2. Also represented in green is the point correspond-
ing to the minimization of −y01, yielding the lower bound p∗1. The second spectrahedral shadow
X2 ⊃ X, corresponding to the projection of the plane of first-order moments of the 14-dimensional
spectrahedron of the second LMI relaxation, is represented in blue on Figure 9.3. Also represented
in green is the point corresponding to the minimization of −y01, yielding the lower bound p∗2.
Apparently, X2 = convX, so minimizing −x2 on X or −y01 on X2 makes no difference.
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Figure 9.1: Nonconvex semialgebraic set X (in red).

Figure 9.2: First spectrahedral shadow X1 ⊃ X (in blue) with boundary of X (in
red) and suboptimal point (in green).

10. Software interfaces

A Matlab interface called GloptiPoly has been designed to construct Lasserre’s LMI relaxations
in a format understandable by the SDP solver SeDuMi, but also any other SDP solver interfaced
via YALMIP. It can be used to construct an LMI relaxation (6.1) of given order corresponding to
a polynomial optimization problem (4.1) with given polynomial data entered symbolically. More
generally, it can be used to model generalized problems of moments (5.3). A numerical algorithm
is implemented in GloptiPoly to detect global optimality of an LMI relaxation, using the rank
tests of Propositions 3.5 and 3.6. The algorithm also extracts numerically the global optima from
a singular value decomposition of the moment matrix. Another Matlab interface called SOSTOOLS
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Figure 9.3: Second spectrahedral shadow X2 ⊃ X (in blue) with boundary of X
(in red) and optimal point (in green).

was developed independently and concurrently. It focuses on the dual polynomial sum-of-squares
decompositions mentioned at the end of Section 5, but not described in this document. Note
however that there is no global optimality detection and global optima extraction algorithm in
SOSTOOLS. Specialized moment and sos modules are available in the interface YALMIP that imple-
ment some of the algorithms of GloptiPoly and SOSTOOLS. For sparse polynomial optimization
problems (with polynomial data featuring a few number of nonzero monomials), a specialized in-
terface called SparsePOP is available. It generates reduced-size LMI relaxations by exploiting the
problem structure.

Note that these interfaces only generate the LMI relaxations in a format understandable by
general-purpose SDP solvers. There is currently no working implementation of a dedicated SDP
solver for problems coming from polynomial optimization.

11. Back to the motivating example

Let us address the eigenvalue assignment problem of Section 1. We formulate it as a nonconvex
polynomial optimization problem

min p0(x)
s.t. pk(x) = 0, k = 1, . . . , n

where the objective function is a positive definite convex quadratic form

p0(x) :=
n∑

i,j=1
(xi − xj)2.

This choice is motivated by physical reasons, and it corresponds to the search of a solution x with
entries xi as identical as possible.

First, let us generate the system of polynomial equations pk(x) = 0, k = 1, . . . , n with the
following Maple script:
with(LinearAlgebra):with(PolynomialTools):
n:=3:B:=Matrix(n):for i from 1 to n-1 do
B(i,i):=2: B(i,i+1):=-1: B(i+1,i):=-1:

end do: B(n,n):=(n+1)/n;
K:=Matrix(n,Vector(n,symbol=k),shape=diagonal):
q:=product(x-1/((2*j)^2-1),j=1..n):
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p:=CoefficientList(collect(charpoly(MatrixInverse(B).F,x)-q,x),x);
For n = 3 this code generates the following polynomials

p1(x) = 5
6x1 + 4

3x2 + 3
2x3 − 3

7
p2(x) = 2

3x1x2 + x1x3 + x2x3 − 53
1575

p3(x) = 1
2x1x2x3 − 1

1575 .

These polynomials are then converted into Matlab format, and we use the following GloptiPoly
code for inputing problem and solving the smallest possible LMI relaxation, i.e. r = 2 in problem
(6.1):
mpol x 3
X = [5/6*x(1)+4/3*x(2)+3/2*x(3)-3/7

2/3*x(1)*x(2)+x(1)*x(3)+x(2)*x(3)-53/1575
1/2*x(1)*x(2)*x(3)-1/1575];

obj = 0;
for i = 1:length(x)
for j = 1:length(x)
obj = obj+(x(i)-x(j))^2;

end
end
P = msdp(min(obj),X==0);
[stat,obj] = msol(P);
double(x)
With this code and the SDP solver SeDuMi, we obtain the unique solution

x ≈ (9.3786 · 10−2, 8.6296 · 10−2, 1.5690 · 10−1)
(to 5 significant digits) certified numerically by a rank one moment matrix, see Proposition 3.6,
after less than one second of CPU time on a standard desktop computer.

The cases n = 2, 3, 4, 5 are solved very easily (in a few seconds) but the solution (obtained with
SeDuMi) is not very accurate. We have not investigated the possibility of refining the solution with
e.g. Newton’s method. We have not investigated either the possibility of certifying rigorously the
solution using e.g. VSDP or multiprecision arithmetic.

The case n = 6 is solved in a few minutes, and the case n = 7 is significantly harder: it takes
a few hours to be solved. Finally, solving the case n = 8 takes approximately 15 hours on our
computer.

12. Notes and references

Accessible introductions to measure theory and relevant notions of functional analysis and prob-
ability theory are [50, 23, 34, 53]. Lasserre’s hierarchy of LMI relaxations for polynomial optimiza-
tion were originally proposed in [27, 28] with a proof of convergence (Proposition 3.3) relying on
Putinar’s Positivstellensatz (Proposition 3.1) described in [46]. The genericity result of Proposition
3.4 is described in [39]. Examples 3.8 and 3.10 are from [18]. The rank condition of Proposition 3.5
relies on flat extension results by Curto and Fialkow, see e.g. [9]. The algorithm implemented in
GloptiPoly for extracting global optima was described in [19], see also [32] and [30] for more com-
prensive descriptions. The use of dual polynomial sum-of-squares was proposed in [41], see also [4].
Optimization over polynomial sum-of-squares and more generally squared functional systems and
the connection with SDP was studied in [37], mostly in the univariate case. An excellent survey
of this material (on both the primal problems on moments and the dual problems on polynomial
sum-of-squares) is [32], and the reader is refered to [30] for a more advanced treatment. The outer
approximation result of Proposition 3.7 follows from the convergence proof of Lasserre’s relaxation
[28] and elementary duality arguments. Finally, the structured eigenvalue assignment problem of
Sections 1 and 11 is comprehensively described in [14].
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CHAPTER 4

Infinite-dimensional polynomial optimization

We extend the approach of the previous chapter to optimization over the infinite-dimensional
sets of solutions of ordinary differential equations with polynomial vector fields.

1. Occupation measures

Let us consider the nonlinear ordinary differential equation (ODE)

(1.1) ẋ(t) = f(t, x(t))

for t ∈ [0, T ] with a given terminal time T > 0, where x : [0, T ] → Rn is a time-dependent n-
dimensional state vector, and vector field f : [0, T ] × Rn → Rn is a smooth map. Given a set
X ⊂ Rn, we assume that dynamics f and terminal time T are such that there is a solution to the
Cauchy problem for ODE (1.1). Since vector field f is smooth, this solution is unique for any given
initial condition x(0) = x0 ∈ X. Any such solution, or trajectory, x(t) is an absolutely continuous
function of time with values in X, and to emphasize the dependence of the solution on the initial
condition we write x(t | x0).

Now think of initial condition x0 as a random variable in X, or more abstractly as a probability
measure ξ0 ∈ P(X), that is a map from the Borel σ-algebra B(X) of subsets of X to the
interval [0, 1] ⊂ R such that ξ0(X) = 1. For example, the expected value of x0 is the vector
E[x0] =

∫
X
x ξ0(dx) of first order moments of ξ0.

Now solve ODE (1.1) for a trajectory, given this random initial condition. At each time t, the
state can also be interpreted as a random variable, i.e. a probability measure that we denote by
ξ ∈ P(X). We say that the measure is transported by the flow of the ODE. We also use the
notation ξ(dx | t) if we want to emphasize the fact that ξ is a conditional probability measure, or
stochastic kernel, i.e. a probability measure acting on subsets of B(X) for each given, or frozen
value of t.

This one-dimensional family, or path of measures, satisfies a partial differential equation (PDE)
which turns out to be linear in the space of probability measures. This PDE is usually called
Liouville’s equation. Conversely, the nonlinear ODE follows by applying Cauchy’s method of
characteristics to the linear transport PDE.

Let us now derive the Liouville equation explicitly.

Definition 4.1 (Indicator function). The indicator function of a set A is the function x 7→ IA(x)
such that IA(x) = 1 when x ∈ A and IA(x) = 0 when x /∈ A.

Definition 4.2 (Occupation measure). Given an initial condition x0, the occupation measure of
a trajectory x(t | x0) is defined by

µ(A×B | x0) :=
∫
A

IB(x(t | x0))dt

for all A ∈ B([0, T ]) and B ∈ B(X).

A geometric interpretation is that µ measures the time spent by the graph of the trajectory
(t, x(t | x0)) in a given subset A × B of [0, T ] ×X. An analytic interpretation is that integration
w.r.t µ is equivalent to time-integration along a system trajectory, i.e.∫ T

0
v(t, x(t | x0))dt =

∫ T

0

∫
X

v(t, x)µ(dt, dx | x0)

for every test function v ∈ C ([0, T ]×X).
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Example 4.1 (Occupation measure for a scalar linear system). Consider the one-dimensional
ODE ẋ(t) = −x(t) with initial condition x(0) = x0 ≥ 0, whose solution is x(t) = x0e

−t. Given
a ≥ 0, the occupation measure of the trajectory is such that

µ([0, 1]× [0, a] | x0) = 1 if x0 ≤ a
= 1− log x0

a if a ≤ x0 ≤ ae
= 0 if x0 > ae

where e ≈ 2.71828 is Euler’s number.

Now define the linear operator L : C 1([0, T ]×X)→ C ([0, T ]×X) by

v 7→ Lv := ∂v

∂t
+

n∑
i=1

∂v

∂xi
fi = ∂v

∂t
+ (grad v)′f

and its adjoint operator L′ : C ([0, T ]×X)′ → C 1([0, T ]×X)′ by the relation

〈v,L′µ〉 := 〈Lv, µ〉 =
∫ T

0

∫
X

Lv(t, x, u)µ(dt, dx)

for all µ ∈ M ([0, T ] × X) = C ([0, T ] × X)′ and v ∈ C 1([0, T ] × X). This operator can also be
expressed as

µ 7→ L′µ = −∂µ
∂t
−

n∑
i=1

∂(fiµ)
∂xi

= −∂µ
∂t
− div fµ

where the derivatives of measures are understood in the sense of distributions (i.e. via their action
on smooth test functions), and the change of sign comes from the integation by parts formula.

Given a test function v ∈ C 1([0, T ]×X) it follows from the above definition of the occupation
measure that

(1.2)
v(T, x(T | x0)) = v(0, x0) +

∫ T
0 v̇(t, x(t | x0))dt

= v(0, x0) +
∫ T

0 Lv(t, x(t | x0))dt
= v(0, x0) +

∫ T
0
∫
X
Lv(t, x)µ(dt, dx | x0).

Definition 4.3 (Initial measure). The initial measure ξ0 ∈ P(X) is a probability measure that
rules the distribution in space of the initial condition x0.

Definition 4.4 (Average occupation measure). Given an initial measure ξ0, the average occupation
measure of the flow of trajectories is defined by

µ(A×B) :=
∫
X

µ(A×B | x0)ξ0(dx0)

for all A ∈ B([0, T ]) and B ∈ B(X).

Example 4.2. Returning to the scalar linear ODE of Example 4.1, with initial conditions uni-
formly distributed on [0, 1], i.e. ξ0(dx) = I[0,1](x)dx, the average occupation measure is such that

µ([0, 1]× [0, a]) =
∫ 1

0
µ([0, 1]× [0, a] | x0)dx0 =

∫ a

0
dx0 +

∫ ae

a

(
1− log x0

a

)
dx0 = a(e− 1)

for any given a ≥ 0.

Definition 4.5 (Terminal measure). The terminal measure ξT ∈ P(X) is a probability measure
that rules the distribution in space of the terminal condition x(T ). It is defined by

ξT (B) :=
∫
X

IB(x(T | x0))ξ0(dx0)

for all B ∈ B(X).

It follows by integrating equation (1.2) with respect to ξ0 that∫
X

v(T, x)ξT (dx) =
∫
X

v(0, x)ξ0(dx) +
∫ T

0

∫
X

Lv(t, x)µ(dt, dx)

or more concisely
(1.3) 〈v(T, .), ξT 〉 = 〈v(0, .), ξ0〉+ 〈Lv, µ〉
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which is a linear equation linking the initial measure ξ0, the terminal measure ξT and the occupation
measure µ, for all v ∈ C 1([0, T ]×X).

Letting
µ0(dt, dx) := δ0(dt) ξ0(dx), µT (dt, dx) := δT (dt) ξT (dx),

we can write 〈v(0, .), ξ0〉 = 〈v, µ0〉 and 〈v(T, .), ξT 〉 = 〈v, µT 〉. Then, equation (1.3) can be rewritten
equivalently using the adjoint linear operator as

〈v,L′µ〉 = 〈v, µT 〉 − 〈v, µ0〉

and since this equation is required to hold for all test functions v ∈ C 1([0, T ] ×X), we obtain a
linear PDE on measures L′µ = µT − µ0 that we write

(1.4) ∂µ

∂t
+ div fµ = µ0 − µT

where the derivatives should be understood in the sense of distributions. This equation is classical
in fluid mechanics and statistical physics, and it is called the equation of conservation of mass, or
the continuity equation, or the advection equation, or Liouville’s equation.

Note that we can disintegrate the average occupation measure as follows

µ(dt, dx) = dt ξ(dx | t)

where ξ(. | t) ∈ P(X) is the conditional of µ w.r.t. t, and dt is the marginal of µ w.r.t. t, here
the Lebesgue measure. Liouville’s equation (1.4) can be also written as a linear PDE satisfied by
probability measure ξ, namely

(1.5) ∂ξ

∂t
+ div fξ = 0

with a given initial measure ξ(. | t = 0) = ξ0.

Proposition 4.1. Given ξ0 ∈ P(X), there is a unique solution ξ(.|t) ∈ P(X) solving equation
(1.5). Letting ξT := ξ(.|t = T ) ∈ P(X), there is a unique solution µ ∈ M+([0, T ] × X) solving
equation (1.4).

Note that in particular if ξ0 = δx0 , then ξ(.|t) = δx(t | x0) is the Dirac measure supported on the
trajectory x(t |x0) starting from x0. The geometric picture behind Liouville’s equation (1.4) is that
it encodes a superposition of all classical solutions solving the Cauchy problem (1.1). The main
advantage of the Liouville PDE is that it is a linear equation (in the infinite-dimensional space
of measures), whereas the original Cauchy ODE is nonlinear (in the infinite-dimensional space of
absolutely continuous trajectories).

2. Measure LP

Consider now the following dynamic optimization problem with polynomial differential con-
straints

(2.1)
p∗ = inf

∫ T
0 l(t, x(t))dt

s.t. ẋ(t) = f(t, x(t)), x(t) ∈ X, t ∈ [0, T ]
x(0) ∈ X0, x(T ) ∈ XT

with given polynomial dynamics f ∈ R[t, x] and Lagrangian l ∈ R[t, x], and state trajectory x(t)
constrained in a compact basic semialgebraic set

X = {x ∈ Rn : pk(t, x) ≥ 0, k = 1, . . . , nX}

for given polynomials pk ∈ R[t, x]. Finally, initial and terminal states are constrained in compact
basic semialgebraic sets

X0 = {x ∈ Rn : p0k(x) ≥ 0, k = 1, . . . , n0} ⊂ X

and
XT = {x ∈ Rn : pTk(x) ≥ 0, k = 1, . . . , nT } ⊂ X

for given polynomials p0k, pTk ∈ R[x]. In problem (2.1) the infimum is w.r.t. a trajectory x(t)
starting in X0, ending in XT , and staying in X.
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Using the framework described in Section 1, we encode the state trajectory x(t) in an occupation
measure µ and we come up with an infinite-dimensional LP problem

(2.2) p∗ = inf
∫
lµ

s.t.
∫ (

∂v
∂t + (grad v)′f

)
µ =

∫
vµT −

∫
vµ0

for all smooth test functions v ∈ C 1([0, T ]×X) and where the infimum is w.r.t. occupation measure
µ ∈ M+([0, T ] × X), initial measure µ0 ∈ P({0} × X0), terminal measure µT ∈ P({T} × XT ),
and terminal time T . Note that µ0 resp. µT and T can be free, or given. More abstractly, problem
(2.2) can be written as a measure LP

(2.3) p∗ = inf 〈l, µ〉
s.t. ∂µ

∂t + div fµ = µ0 − µT

where the linear constraint is Liouville’s equation, and the minimum is w.r.t. measures (µ, µ0, µT ) ∈
M+([0, T ]×X)×M+({0}×X0)×M+({T}×XT ). If the three measures µ, µ0 and µT are unknown,
then an additional linear constraint like µ0({0}×X0) = 1 or µT ({T}×XT ) = 1 must be enforced
to rule out the trivial zero solution.

Remark 4.1 (Autonomous case). If the terminal time T is free and the Lagrangian l and the
dynamics f do not depend explicitly on time t, then it can be shown without loss of generality that
in problem (2.3) the measures do not depend explicitly on time either, and the terminal time is
equal to the mass of the occupation measure, i.e. T = µ(X). The measure LP becomes

(2.4) p∗ = inf 〈l, µ〉
s.t. div fµ = µ0 − µT

where the minimum is taken w.r.t. (µ, µ0, µT ) ∈M+(X)×M+(X0)×M+(XT ).

Example 4.3. Consider again the scalar linear ODE of Example 4.1

ẋ = −x

with initial measure µ0(dt, dx) := δ0(dt) ξ0(dx) with state distribution ξ0 ∈P(X0) supported on

X0 := {x ∈ R : p0(x) := 1
4 −

(
x− 3

2

)2
≥ 0},

with terminal measure µT (dt, dx) := δT (dt) ξT (dx) with state distribution ξT ∈ P(XT ) supported
on

XT := {x ∈ R : pT (x) := 1
4 − x

2 ≥ 0},

and with average occupation measure µ(dt, dx) := dtξ(dx|t) with state conditional ξ(dx|t) ∈P(X)
supported for each t ∈ [0, T ] on

X := {x ∈ R : p(x) := 4− x2 ≥ 0}.

We want to find trajectories minimizing the state energy
∫ T

0 x2(t)dt.
The linear measure problem (2.3) reads

p∗ = inf 〈x2, µ〉
s.t. ∂µ

∂t − div xµ = µ0 − µT
where the minimum is w.r.t. terminal time T and nonnegative measures µ, µ0 and µT supported
respectively on [0, T ]×X, {0}×X0 and {T}×XT , and we have to enforce the additional normal-
ization constraint µ0({0} ×X0) = 1.

This problem can be solved analytically, with optimal trajectory x(t) = e−t leaving X0 at x(0) = 1
and reaching XT at x(T ) = 1

2 for T = log 2 ≈ 0.6931. So the optimal measures solving the above
LP are

µ(dt, dx) = dt δe−t(dx), µ0(dt, dx) = δ0(dt) δ1(dx), µT (dt, dx) = δlog 2(dt) δ 1
2
(dx)

and p∗ =
∫ log 2

0 e−2tdt = 3
8 .
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Alternatively, following Remark 4.1, since the trajectory optimization problem is autonomous,
we can also formulate the measure LP problem

p∗ = inf 〈x2, µ〉
s.t. −div xµ = µ0 − µT

w.r.t. nonnegative measures µ, µ0 and µT supported respectively on X, X0 and XT , and the
optimal solution of the problem is now

µ(dx) =
∫ T

0
δe−t(dx)dt, µ0(dx) = δ1(dx), µT (dx) = δ 1

2
(dx).

3. Moment LP and LMI relaxations

Let us write problem (2.3) as as special instance of a more general measure LP
p∗ = inf 〈c, ν〉

s.t. Aν = β
ν ∈M n

+

where the decision variable is an n-dimensional vector of nonnegative measures ν. Linear operator
A : M n →Mm takes an n-dimensional vector of measures and returns an m-dimensional vector of
measures. The right hand side β ∈Mm is a givenm-dimensional vector of measures. The objective
function is the duality pairing between a given n-dimensional vector of continuous functions c ∈ C n

and ν, i.e. 〈c, ν〉 =
∑n
i=1〈ci, νi〉 =

∑n
i=1
∫
ciνi. If we suppose that all the functions are polynomials,

i.e. aij(x) ∈ R[x], ci(x) ∈ R[x], i = 1, . . . , n, j = 1, . . . ,m, then each measure νi can be manipulated
via the sequence yi := (yiα)α∈N of its moments. The measure LP becomes a moment LP

(3.1)
p∗ = inf

∑n
i=1
∑
α ciαyiα

s.t.
∑n
i=1
∑
α aijαyiα = bj , j = 1, . . . ,m

yi has a representing measure νi ∈M+(Xi), i = 1, . . . , n.
As in Section 6, we use the explicit LMI conditions of Section 3 to model the constraints that a
sequence has a representing measure. If each semialgebraic set

Xi := {x ∈ Rn : pik(x) ≥ 0, k = 1, . . . , ni}
satisfies Assumption 3.1 for i = 1, . . . , n, problem (3.1) becomes

p∗ = inf
∑n
i=1
∑
α ciαyiα

s.t.
∑n
i=1
∑
α aijαyiα = bj , j = 1, . . . ,m

M(yi) ≥ 0, M(pik yi) ≥ 0, i = 1, . . . , n, k = 1, . . . , ni.
Then, in order to solve problem (2.3), we can build a hierarchy of finite-dimensional LMI relax-
ations. This generates a monotonically nondecreasing sequence of lower bounds asymptotically
converging to p∗. Details are omitted.

Example 4.4. At the end of Example 4.3 we came up with the autonomous measure LP
p∗ = inf 〈x2, µ〉

s.t. −div xµ = µ0 − µT
in the decision variables (µ, µ0, µT ) ∈M+(X)×M+(X0)×M+(XT ) with normalization constraint
µ0(X0) = 1. The corresponding moment LP problem (3.1) reads

p∗ = inf
∫
x2µ(dx)

s.t.
∫
µ0(dx) = 1
−α

∫
xαµ(dx) =

∫
xαµT (dx)−

∫
xαµ0(dx), α = 0, 1, 2, . . .

or equivalently
p∗ = inf y2

s.t. y00 = 1
−αyα = yT α − y0α, α = 0, 1, 2 . . .
y has a representing measure µ ∈M+(X)
y0 has a representing measure µ0 ∈M+(X0)
yT has a representing measure µT ∈M+(XT )
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and the corresponding LMI relaxation of order r is given by

p∗r = inf y2
s.t. y00 = 1

−αyα = yT α − y0α, α = 0, 1, . . . , 2r
Mr(y) ≥ 0, Mr−1(p y) ≥ 0
Mr(y0) ≥ 0, Mr−1(p0 y0) ≥ 0
Mr(yT ) ≥ 0, Mr−1(pT yT ) ≥ 0

.

From the analytic solution described in Example 4.3 we can compute the entries of the moment
vector y of measure µ, namely y0 = log 2 and

yα =
∫
xαµ(dx) =

∫ log 2

0
e−αtdt = 1− 2−α

α
, α = 1, 2, . . .

4. Optimal trajectory recovery

Once an LMI relaxation of given order is solved, we expect vector y to contain approximate mo-
ments of the optimal occupation measure corresponding to the optimal trajectory (if it is unique),
or at least a superposition (convex combination) of optimal trajectories. In some cases, we can
recover approximately the trajectory from the knowledge of its moments. The dual LMI relax-
ations can be useful for this purpose. However, we do not elaborate further on this point in this
document.

Example 4.5. Solving the LMI relaxations of Example 4.4, we observe that the moment matri-
ces of the initial and terminal measures both have rank one (to numerical roundoff errors), with
respective moment vectors

y0α =
∫
xαµ0(dx) = 1, yT α =

∫
xαµT (dx) = 2−α, α = 0, 1, 2, . . .

From this it follows that µ0 = δ1, µT = δ 1
2
and the unique optimal trajectory starts from x(0) = 1

and reaches x(T ) = 1
2 .

5. Extension to piecewise polynomial dynamics

The framework can be extended readily to differential equations with terminal cost and piecewise
polynomial dynamics

(5.1)
p∗ = inf f0(x(T )) +

∫ T
0 l(t, x(t))dt

s.t. ẋ(t) = fj(t, x(t)), x(t) ∈ Xj , j = 1, . . . , N, t ∈ [0, T ]
x(0) ∈ X0, x(T ) ∈ XT

with given polynomial dynamics fj ∈ R[t, x], Lagrangian l ∈ R[t, x], terminal cost f0 ∈ R[x] and
state trajectory x(t) constrained in compact basic semialgebraic sets Xj . We assume that the
state-space partitioning sets, or cells Xj , are disjoint, i.e. all their respective intersections have
zero Lebesgue measure in Rn, and they all belong to a given compact semialgebraic set X, e.g. a
Euclidean ball of large radius. Initial and terminal states are constrained in given compact basic
semialgebraic sets X0 and XT .

We can then extend the measure LP framework to several measures µj , one supported on each
cell Xj , so that the global occupation measure is

µ =
N∑
j=1

µj .

The measure LP reads
p∗ = inf 〈f0, µT 〉+

∑N
j=1〈l, µj〉

s.t.
∑N
j=1

(
∂µj

∂t + div fjµj
)

+ µT = µ0.

It can solved numerically with a hiearchy of LMI relaxations as in Section 3.
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6. Back to the motivating example

To address our motivating problem of Section 2 we formulate an optimization problem (5.1)
with systems dynamics defined as locally affine functions in three cells Xj , j = 1, 2, 3 corresponding
respectively to the linear regime of the torque saturation

X1 = {x ∈ R2 : |F ′x| ≤ L}, f1(x) =
[

x1
−F ′x

]
the upper saturation regime

X2 = {x ∈ R2 : F ′x ≥ L}, f2(x) =
[
x1
−L

]
and the lower saturation regime

X3 = {x ∈ R2 : F ′x ≤ −L}, f3(x) =
[
x1
L

]
.

The objective function has no integral term and a concave quadratic terminal term f0(x) =
−x(T )Tx(T ) which we would like to minimize, so as to find trajectories with terminal states
of largest norm. If we can certify that for every initial state x(0) chosen in X0 the final state x(T )
belongs to set included in the deadzone region, we have validated our controlled system. In the
measure LP problem of Section 5, the 3 measures µ, µ0 and µT are unknown so we have to insert
a normalization constraint to rule out the trivial zero solutions:

p∗ = inf 〈f0, µT 〉+
∑N
j=1〈l, µj〉

s.t.
∑N
j=1

(
∂µj

∂t + div fjµj
)

= µ0 − µT
µ0({0} ×X0) = 1.

The resulting GloptiPoly script, implementing some elementary scaling strategies to improve
numerical behavior of the SDP solver, is as follows:
I = 27500; % inertia
kp = 2475; kd = 19800; % controller gains
L = 380; % input saturation level
dz1 = 0.2*pi/180; dz2 = 0.05*pi/180; % deadzone levels
thetamax = 50; omegamax = 5; % bounds on initial conditions
epsilon = sqrt(1e-5); % bound on norm of terminal condition
T = 50; % final time

r = input(’order of relaxation =’); r = 2*r;

% measures
mpol(’x1’,2); m1 = meas(x1); % linear regime
mpol(’x2’,2); m2 = meas(x2); % upper sat
mpol(’x3’,2); m3 = meas(x3); % lower sat
mpol(’x0’,2); m0 = meas(x0); % initial
mpol(’xT’,2); mT = meas(xT); % terminal

% dynamics on normalized time range [0,1]
% saturation input y normalized in [-1,1]
K = -[kp kd]/L;
y1 = K*x1; f1 = T*[x1(2); L*y1/I]; % linear regime
y2 = K*x2; f2 = T*[x2(2); L/I]; % upper sat
y3 = K*x3; f3 = T*[x3(2); -L/I]; % lower set

% test functions for each measure = monomials
g1 = mmon(x1,r); g2 = mmon(x2,r); g3 = mmon(x3,r);
g0 = mmon(x0,r); gT = mmon(xT,r);

% unknown moments of initial measure
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y0 = mom(g0);

% unknown moments of terminal measure
yT = mom(gT);

% input LMI moment problem
cost = mom(xT’*xT);
Ay = mom(diff(g1,x1)*f1)+...

mom(diff(g2,x2)*f2)+...
mom(diff(g3,x3)*f3); % dynamics

% trajectory constraints
X = [y1^2<=1; y2>=1; y3<=-1];
% initial constraints
X0 = [x0(1)^2<=thetamax^2, x0(2)^2<=omegamax^2];
% terminal constraints
XT = [xT’*xT<=epsilon^2];
% bounds on trajectory
B = [x1’*x1<=4; x2’*x2<=4; x3’*x3<=4];

% input LMI moment problem
P = msdp(max(cost), ...

mass(m1)+mass(m2)+mass(m3)==1, ...
mass(m0)==1, ...
Ay==yT-y0, ...
X, X0, XT, B);

% solve LMI moment problem
[status,obj] = msol(P)

With the help of this script and the SDP solver SeDuMi, we obtain the following sequence of
upper bounds (since we maximize) on the maximum squared Euclidean norm of the final state:

relaxation order r 1 2 3 4
upper bound 1.0 · 10−5 1.0 · 10−5 1.0 · 10−5 1.0 · 10−5

CPU time (sec.) 0.2 0.5 0.7 0.9
number of moments 30 75 140 225

In the table we also indicate the CPU time (in seconds, on a standard desktop computer) and the
total number of moments (size of vector y in the LMI relaxation). We see that the bound obtained
at the first relaxation (r = 1) is not modified for higher relaxations. This clearly indicates that all
initial conditions are captured in the deadzone region at time T , which is the box [−2, 2] 10−1π

180 ×
[−5, 5] 10−2π

180 ⊃ {x ∈ R2 : xTx ≤ 10−5}.
If we want to use this approach to simulate a particular trajectory, in the code we must modify

the definition of the initial measure. For example for initial conditions x1(0) = 50, x2(0) = −1, we
must insert the following sequence:

% given moments of initial measure = Dirac at x0
p = genpow(3,r); p = p(:,2:end); % powers
theta0 = 50; omega0 = -1; % in degrees
y0 = ones(size(p,1),1)*[theta0 omega0]*pi/180;
y0 = prod(y0.^p,2);

As previously, the sequence of bounds on the maximum squared Euclidean norm of the final state is
constantly equal to 1.0 ·10−5, and in the following table we represent as functions of the relaxation
order r the masses of measures µk, k = 1, 2, 3 which are indicators of the time spent by the
trajectory in the respective linear, upper saturation and lower saturation regimes:
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Figure 6.1: Torque input with lower saturation during approx. 7% of the time range.

relaxation order r 1 2 3 4 5 6 7∫
dµ1 37 89 92 92 93 93 93∫
dµ2 32 5.3 0.74 0.30 0.21 0.15 0.17∫
dµ3 32 5.1 7.1 6.9 6.8 6.9 7.0

This indicates that most of the time (approx. 93%) is spent in the linear regime, with approx. 7%
of the time spent in the lower saturation regime, and a negligible amount of time is spent in the
upper saturation regime. This is confirmed by simulation, see Figure 6.1.

7. Notes and references

Historically, the idea of reformulating nonconvex nonlinear ordinary differential equations (ODE)
into convex LP, and especially linear partial differential equations (PDE) in the space of probability
measures, can be tracked back to the early 19th century. It was Joseph Liouville in 1838 who first
introduced the linear PDE involving the Jacobian of the transformation exerted by the solution of
an ODE on its initial condition [31]. The idea was then largely expanded in Henri Poincaré’s work
on dynamical systems at the end of the 19th century, see in particular [43, Chapitre XII (Invariants
intégraux)]. This work was pursued in the 20th century in [25], [36, Chapter VI (Systems with an
integral invariant)] and more recently in the context of optimal transport by e.g. [47], [59] or [1].
The proof of Proposition 4.1 can be found e.g. in [1, Chapter 8]. Poincaré himself in [44, Section
IV] mentions the potential of formulating nonlinear ODEs as linear PDEs, and this programme
has been carried out to some extent by [7], see also [26], [24], [21]. Our contribution is to apply the
approach described in [29], see also [13], to address polynomial trajectory optimization problems.
The use of LMI and measures was also investigated in [45] for building Lyapunov barrier certifi-
cates, and based on a dual to Lyapunov’s theorem described in [48]. Our approach is similar, in the
sense that optimization over systems trajectories is formulated as an LP in the infinite-dimensional
space of measures. This LP problem is then approached as a generalized moment problem via a
hierarchy of LMI relaxations, following the strategy described extensively in [30]. Finally, our
control law validation problem of Sections 2 and 6 is comprehensively described in [20].
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CHAPTER 5

Polynomial optimal control

Our general setup for an optimal control problem is the following:

(0.1)
p∗ := inf

∫ T
0 l(t, x(t), u(t))dt

s.t. ẋ(t) = f(t, x(t), u(t)),
x(t) ∈ X, u(t) ∈ U, t ∈ [0, T ],
x(0) ∈ X0, x(T ) ∈ XT

where the infimum is with respect to a control law u : [0, T ]→ Rm which is a measurable function
of time with values constrained to a given set U ⊂ Rm, and such that the resulting state trajectory

x(t | x0, u) = x0 +
∫ t

0
f(s, x(s), u(s))ds

starts at x(0) = x0 in a given set X0, terminates at time T > 0 in a given set XT , and stays in
a given set X in between. It is assumed that the given dynamics f is smooth, so that there is a
unique trajectory given x0 and u, which motivates our notation x(t |x0, u). Also given is a smooth
Lagrangian l. The terminal time T is either given or free.

1. Controlled occupation measures

As in Chapter 4 we use occupation measures to model problem (0.1) as an infinite-dimensional
LP. The main difference however is that the occupation measures will now depend on the control.

Definition 5.1 (Controlled occupation measure). Given an initial condition x0 and a control law
u(t), the controlled occupation measure of a trajectory x(t | x0, u) is defined as

µ(A×B × C | x0, u) :=
∫
A

IB(x(t | x0, u))dt

for all A ∈ B([0, T ]), B ∈ B(X) and C ∈ B(U).

A geometric interpretation is that µ measures the time spent by the graph of the trajectory
(t, x(t | x0, u), u(t)) in a given subset A×B × C of [0, T ]×X × U . An analytic interpretation is
that integration w.r.t µ is equivalent to time-integration along a system trajectory.

If the initial condition x0 ∈ X is not a vector, but an initial probability measure ξ0 ∈ P(X),
see Definition 4.3, we can proceed as in Section 1 and model the whole flow of trajectories with a
measure.

Definition 5.2 (Average controlled occupation measure). Given an initial measure ξ0 and a
control law u(t), the average controlled occupation measure of the flow of trajectories is defined as

µ(A×B × C | u) :=
∫
X

µ(A×B × C | x0, u)ξ0(dx0)

for all A ∈ B([0, T ]), B ∈ B(X) and C ∈ B(U).

We also use the terminal measure ξT as in Definition 4.5, and let µ0 := δ0 ξ0, µT := δT ξT .
Measures µ, µ0 and µT are linked by a linear PDE. Let us now derive this equation with the help
of test functions v depending on t and x only. There is no dependence of v on the control variable
u since the control law is an unknown in optimal control problem (0.1).

Define the linear operator L : C 1([0, T ]×X)→ C ([0, T ]×X × U) by

v 7→ Lv := ∂v

∂t
+ (grad v)′f
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and its adjoint operator L′ : C ([0, T ]×X × U)′ → C 1([0, T ]×X)′ by

µ 7→ L′µ = −∂µ
∂t
− div fµ.

Given a test function v ∈ C 1([0, T ]×X), it holds

v(T, x(T )) = v(0, x(0)) +
∫ T

0 v̇(t, x(t | x0, u)dt
= v(0, x(0)) +

∫ T
0 Lv(t, x((t | x0, u), u(t))dt

= v(0, x(0)) +
∫ T

0
∫
X

∫
U
Lv(t, x, u)µ(dt, dx, du | x0, u)

and integrating w.r.t. ξ0 we obtain
∫
Lvµ =

∫
vµT −

∫
vµ0 for all v, which can be written in the

sense of distributions as L′µ = µT − µ0 or more explicitly

(1.1) ∂µ

∂t
+ div (fµ) = µ0 − µT .

This is the controlled Liouville equation. The difference with the uncontrolled Liouville equa-
tion (1.4) is that both µ and f now also depend on the control variable u. An occupation measure
µ satisfying equation (1.1) encodes state trajectories but also control trajectories.

2. Relaxed control

We can disintegrate the occupation measure as
(2.1) µ(dt, dx, du) = dt ξ(dx | t) ω(du | t, x)
where the three components are as follows:

• dt is the time marginal, the Lebesgue measure of time, corresponding to the property that
time flows uniformly;

• ξ(dx | t) ∈ P(X) is the distribution of state conditional on t, or state stochastic kernel,
a probability measure on X for each t ∈ [0, T ], which models the state interpreted as a
time-dependent random variable;

• ω(du | t, x) ∈ P(U) is the distribution of the control conditional on t and x, or control
stochastic kernel, a probability measure on U for each t ∈ [0, T ] and x ∈ X, which models
the control interpreted as a time- and state-dependent random variable.

It means that instead of a control law u which is a measurable function of time in [0, T ] with values
in U , we have a relaxed control, a probability measure

ω ∈P(U)
parametrized in time t ∈ [0, T ] and space x ∈ X. Such parametrized probability measures are
called Young measures in the calculus of variations and PDE literature. Our control, originally
chosen as a measurable function (of time and state), is therefore relaxed to a probability measure
(parametrized in time and state). Observe that the space of probability measures is larger than
any Lebesgue space, since for the particular choice of a time-dependent Dirac measure

ω(du | t, x) = δu(t,x)

with u(t, x) ∈ U we retrieve a classical control law which is a function of time and state.
The controlled Liouville equation (1.1) can be written as∫

vµT −
∫
vµ0 =

∫
Lvµ

=
∫
T

∫
X

∫
U

(
∂v(t,x)
∂t + (grad v(t, x))′f(t, x, u)

)
ω(du | t, x)ξ(dx | t)dt

=
∫
T

∫
X

(
∂v(t,x)
∂t + (grad v(t, x))′

[∫
U
f(t, x, u)ω(du | t, x)

])
ξ(dx | t)dt

for all test functions v ∈ C 1([0, T ]×X). It is now apparent that the trajectories modeled by the
controlled Liouville equation are generated by a family of absolutely continuous trajectories of the
relaxed controlled ODE

ẋ(t) =
∫
U

f(t, x(t), u)ω(du | t, x).

Indeed, in optimal control problem (0.1), the original control system
(2.2) ẋ(t) = f(t, x(t), u(t)), u(t) ∈ U
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can be interpreted as a differential inclusion

ẋ(t) ∈ f(t, x(t), U) := {f(t, x(t), u) : u ∈ U}

where the state velocity vector ẋ(t) can be chosen anywhere in the set f(t, x(t), U) ⊂ Rn. In
contrast, any triplet of measures (µ, µ0, µT ) satisfying the controlled Liouville equation (1.1) cor-
responds to a family of trajectories of the relaxed, or convexified differential inclusion

ẋ(t) ∈ conv f(t, x(t), U).

In that sense, the set of trajectories modeled by the controlled Liouville equation (1.1) is larger
than the set of trajectories of the control system (2.2). As will be seen in the numerical example
section, this is an advantage of the occupation measure framework, in the sense that we will be
able to construct relaxed or stochastic control laws that cannot can obtained using functions.

Based on the above discussion, we can define the relaxed optimal control problem

(2.3)
p∗R := inf

∫ T
0 l(t, x(t), u(t))dt

s.t. ẋ(t) ∈ conv f(t, x(t), U),
x(t) ∈ X, u(t) ∈ U, t ∈ [0, T ],
x(0) ∈ X0, x(T ) ∈ XT

and it holds p∗R ≤ p∗. Contrived optimal control problems (e.g. with stringent state constraints)
can be cooked up such that p∗R < p∗, but generically (in a sense to be defined rigorously, but not
in this document), the following assumption will be satisfied.

Assumption 5.1 (No relaxation gap). We assume that p∗R = p∗.

3. Measure LP

Using the controlled occupation measure and relaxed controls of the previous sections, and under
Assumption 5.1, relaxed optimal control problem (2.3) can be formulated as an infinite-dimensional
measure LP

p∗ = inf 〈l, µ〉
s.t. ∂µ

∂t + div fµ = µ0 − µT
where the infimum is w.r.t. measures (µ, µ0, µT ) ∈M+([0, T ]×X×U)×M+({0}×X0))×M+({T}×
XT ). We can then rely on the results of Section 3 to build a hierarchy of finite-dimensional LMI
relaxations for this problem. This generates a monotonically nondecreasing sequence of lower
bounds asymptotically converging to p∗. Details are omitted.

Remark 5.1 (Autonomous case). If the terminal time T is free and the Lagrangian l and the
dynamics f do not depend explicitly on time t, then the measure LP becomes

p∗ = inf 〈l, µ〉
s.t. div fµ = µ0 − µT

where the minimum is now taken w.r.t. (µ, µ0, µT ) ∈M+(X ×U)×M+(X0)×M+(XT ), i.e. the
measures do not depend explicitly on time either.

Example 5.1 (Linear quadratic regulator). Consider the elementary scalar linear quadratic reg-
ulator problem

p∗ = inf
∫ T

0 (x2(t) + u2(t))dt
s.t. ẋ(t) = u(t), t ∈ [0, T ]

x(0) = 1, x(T ) = 0
with given initial and terminal conditions. The corresponding autonomous measure LP is

p∗ = inf 〈x2 + u2, µ〉
s.t. div u µ = δ1 − δ0

where the minimum is w.r.t. occupation measure µ. Its moment LP problem reads

p∗ = inf
∫

(x2 + u2)µ(dx, du)
s.t. α

∫
xα−1uµ(dx, du) = −1, α = 0, 1, 2 . . .
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or equivalently
p∗ = inf y20 + y02

s.t. y01 = 2y11 = 3y21 = · · · = −1
M(y) ≥ 0

where the minimum is w.r.t. the moments of the occupation measure

yα =
∫
xα1uα2µ(dx, du), α = 0, 1, 2 . . .

Solving the first LMI relaxation
p∗1 = inf y20 + y02

s.t. y01 = 2y11 = −1

M1(y) =

 y00 y10 y01
y10 y20 y11
y01 y11 y02

 ≥ 0.

with the SDP solver SeDuMi yields (rounded to 3 significant digits)

M1(y∗) =

 3.66 1.00 −1.00
1.00 0.500 −0.500
−1.00 −0.500 0.500

 .

This example can be solved analytically (with a scalar Riccati equation) and the solution is the
state-feedback u(t) = −x(t) corresponding to the optimal trajectory x(t) = e−t with cost p∗ =∫∞

0 2e−2tdt = 1 and the optimal occupation measure

µ(dx, du) =
∫ ∞

0
δe−t(dx)δ−e−t(du)dt

with moments
yα = (−1)α2

∫ ∞
0

e−(α1+α2)tdt, α ∈ N2

equal to y00 = ∞, y10 = 1, y01 = −1, y20 = 1
2 , y11 = − 1

2 , y02 = 1
2 etc. We observe that the

numerical moments y∗ closely match, except the mass y00 which should approximate the terminal
time T . Note however that for this numerical value of T ≈ 3.66, the cost is

∫ T
0 2e−2tdt ≈ 0.999

almost equal to the optimal value p∗ = 1.

4. Optimal control recovery

Once an LMI relaxation of given order is solved, we expect vector y to contain approximate mo-
ments of the optimal occupation measure corresponding to the optimal trajectory (if it is unique),
or at least a superposition (convex combination) of optimal trajectories. To recover the optimal
control, or the optimal state trajectory, we can use the dual problem, which is a relaxation of the
Hamilton-Jacobi-Bellman PDE of optimal control. However, we do not elaborate further on these
techniques in this document.

5. Back to the motivating example

Let us come back to Bolza’s example of Section 3. We saw that the infimum can be approached
by a control sequence switching increasingly quickly between −1 and +1, so the idea is to relax
the ODE

ẋ(t) = f(t, x(t), u(t))
with the following differential equation

ẋ(t) =
∫
f(t, x(t), u)ω(du | t)

where ω(du|t) is a probability measure parametrized in t. State trajectories are then obtained by
integration w.r.t. time and control

x(t) = x(0) +
∫ t

0

∫
f(s, x(s), u)ω(du | s)ds.
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Here for the Bolza example we choose

ω(du | t) = 1
2(δu=−1 + δu=+1)

a time-independent weighted sum of two Dirac measures at u = −1 and u = +1. The relaxed
state trajectory is then equal to

x(t) = 1
2

(∫ t
0 f(s, x(s),−1)ds+

∫ t
0 f(s, x(s),+1)ds

)
= 1

2

(
−
∫ t

0 ds+
∫ t

0 ds
)

= 0

and the relaxed objective function is equal to∫ 1
0
∫
U
l(t, x(t), u)dω(u | t)dt = 1

2

(∫ 1
0 l(t, x(t),−1) +

∫ 1
0 l(t, x(t),+1)

)
=

∫ 1
0 x

4(t)dt = 0
so that the infimum p∗ = 0 is reached.

The corresponding GloptiPoly script is as follows:
% initial point measure
mpol(’t0’); mpol(’x0’);

% occupation measure
mpol(’t’); mpol(’x’); mpol(’u’);
meas(t,2); meas(x,2); meas(u,2);

% final point measure
mpol(’tT’); mpol(’xT’,1);
meas(tT,3); meas(xT,3);

r = input(’order of relaxation =’); r = 2*r;

% define test function arrays
v = mmon([t;x],r);
v0 = mmon([t0; x0],r);
vT = mmon([tT; xT],r);

% dynamics f(x,u) = u
dvdt = diff(v,t) + diff(v,x)*u;

% assign initial point
assign([t0; x0],[ 0; 0]);

% input LMI moment problem
P = msdp (min(x^2 + (1-u^2)^2 ), ...

0 == mom(dvdt) + double(v0) - mom(vT), ...
t*(1-t) >= 0, u^2 <= 1, x^2 <= 1, ...
tT == 1, xT^2 <= 1);

% solve LMI moment problem
[status, obj] = msol(P)

6. Notes and references

The use of relaxations and LP formulations of optimal control problems (on ordinary differential
equations and partial differential equations) is classical, and can be traced back to the work by L.
C. Young [61], Filippov [12], Warga [60], Gamkrelidze [15] and Rubio [54] amongst many others.
For more details and a historical survey, see e.g. [11, Part III]. Parametrized measures arising in the
disintegration (2.1) of the occupation measures are called Young measures in the PDE literature,
see e.g. [42] or [52]. Our contribution is to notice that hierarchies of LMI relaxations can be used
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to solve numerically the infinite-dimensional LP on measures arising from relaxed optimal control
problems with polynomial data, following the methodology described originally in [29]. By the
Filippov-Ważewski relaxation theorem [2], the trajectories of the optimal control problem (0.1)
are dense (w.r.t. the metric of uniform convergence of absolutely continuous functions of time)
in the set of trajectories of the relaxed optimal control problem (2.3). This justifies Assumption
5.1. Finally, our motivating Bolza problem of Sections 3 and 5 is a classical example of calculus of
variations illustrating that an optimal control problem with smooth data (infinitely differentiable
Lagrangian and dynamics, no state or input constraints) can have a highly oscillatory optimal
solution, see e.g. [10, Example 4.8].
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