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Abstract

Let C be the field of complex numbers and x = (x1, . . . , xm)T ∈ Cm. We denote by C[[x]]
the ring of formal power series in m variables over C and by C((x)) its field of fractions. The
completely integrable Pfaffian systems with normal crossings is the class of linear systems of
partial differential equations in dimension n and m variables of the form
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where, for 1 ≤ i ≤ m, pi is a nonnegative integer, (p1, . . . , pm) is called the rank of (1),
and A(i)(x) is n × n- matrix with entries in C[[x]]. For, 1 ≤ i, j ≤ m the latter satisfy the
integrability condition:
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The change of variable Y = T (x)Z, where the gauge transformation T (x) ∈ GLn(C((x))),
takes the system above into an equivalent system
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In fact,
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for i = 1, . . . ,m

and B(i)’s simultaneously satisfy the complete integrability condition.

We say a change of variable Y = T (x)Z is compatible with (1) whenever the normal crossing
in (2) is preserved, i.e. B(i)(x) ∈ C[[x]], and qi ≤ pi, 1 ≤ i ≤ m.

We call Poincaré rank the minimal rank of (1), i.e. the one for which the qi’s are simultaneously
and individually the smallest possible. In particular, if (1) is equivalent to a system(2) with
q1 = 0, . . . , qm = 0 then it is called regular singular.
A formal fundamental solution of (1) is given in [8, 12] by the form:
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where t = (t1, . . . , tm) such that ti = xi

1
si for some positive integer si, for all 1 ≤ i ≤ m;

Φ(t) is an invertible matrix of entries in C[[t]], Λi’s are constant diagonal matrices, and Pi(
1
ti

)’s

are polynomials in 1
ti

with diagonal matrix coefficients.

We are interested in the formal reduction, i.e. the algorithmic procedure that constructs
the formal solution of (1). Formal normal forms of (1) are given in [6] (case m=2) and
[12]. However, the complete formal reduction, in analogy with systems of ordinary differential
equations (ODS) [2, 1], is still under investigation.
As a first step, it is natural to tackle the rank reduction of (1), i.e. the computation of
a compatible gauge transformation which takes (1) to (2) where (q1, . . . , qm) is the Poincaré
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rank. The regularity of a Pfaffian system is shown in [7, 13] to be equivalent to the regularity of
the individual systems xpi+1

i
∂Y
∂xi

= A(i)(x)Y considered as ODS. As a consequence, regularity

criteria already given for ODS (e.g. [10, 11]) can be applied to the individual systems separately
to answer the question for (1). But gauge transformations used for ODS are not generally
compatible with (1). Barkatou and LeRoux compute in [5] a compatible transformation based
on the existence of stationary sequences of free lattices in the case of two variables (m=2).
In this talk, we use results from [3, 4, 9] to give another rank reduction of (1) in the case
m = 2 and for a generic case whenever m > 2. A formal reduction is given under a restrictive
condition as well.

This work is a part of my PhD in progress. My thesis is jointly supervised by Pr. Moulay Barkatou
at the University of Limoges, France, and Dr. Hassan Abbas at the Lebanese University, Lebanon.
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